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1  Introduction

1.1 Overview of the SELF System

This section contains an overview of the system and its implementation; it can be skipped if you
wish to get started as quickly as possible.

1.1.1  The system

Although SELF runs as a single UNIX† process, it really has two parts: the virtual machine (VM)
and the SELF world, the collection of SELF objects that are the SELF prototypes and programs:

The VM executes S ELF programs specified by objects in the S ELF world and provides a set of
primitives (which are methods written in C++) that can be invoked by SELF methods to carry out
basic operations like integer arithmetic, object copying, and I/O. The SELF world distributed with
the VM is a collection of S ELF objects implementing various traits and prototypes like cloning
traits and dictionaries. These objects can be used (or changed) to implement your own programs.

† UNIX is a trademark of AT&T Bell Laboratories.

Figure 1 The SELF system
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1.1.2  The translation process

SELF programs are translated to machine code in a two-stage process (see Figure 2). Code typed
in at the prompt, through the user interface, or read in from a file is parsed into SELF objects. Some
of these objects are data objects; others are methods. Methods have their own behavior which they
represent with bytecodes. The bytecodes are the instructions for a very simple virtual processor
that understands instructions like “push receiver” or “send the ‘x’ message.” In fact, S ELF byte-
codes correspond much more closely to source code than, say , Smalltalk-80 bytecodes. (See
[CUL89] for a list of the SELF byte codes.) The e of the virtual machine is to pretend
that these bytecodes are directly executed by the computer; the programmer can explore the SELF
world down to the bytecode level, but no further. This pretense ensures that the behavior of a SELF
program can be understood by looking only at the SELF source code.

The second stage of translation is the actual compilation of the bytecodes to machine code. This is
how the “execution” of bytecodes is implemented—it is totally invisible on the SELF level except
for side effects like execution speed and memory usage. The compilation takes place the first time
a message is actually sent; thus, the first execution of a program will be slower than subsequent ex-
ecutions.

Actually, this explanation is not entirely accurate: the compiled method is specialized on the type of the receiver . If
the same message is later sent to a receiver of dif ferent type (e.g., a float instead of an integer), a new compilation
takes place. This technique is called customization; see [CU89] for details. Also, the compiled methods are placed
into a cache from which they can be flushed for various reasons; therefore, they might be recompiled from time to
time. Furthermore, the current version of the compiler will recompile and reoptimize frequently used code, using in-
formation gathered at run-time as to how the code is being used; see [HCU91] for details.

Don’t be misled by the term “compiled method” if you are familiar with Smalltalk: in Smalltalk terminology it de-
notes a method in its bytecode form, but in SELF it denotes the native machine code form. In Smalltalk there is only
one compiled method per source method, but in SELF there may be several different compiled methods for the same
source method (because of customization).
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2  Language Reference

This chapter specifies SELF’s syntax and semantics. An early version of the syntax was presented
in the original S ELF paper by Ungar and Smith [US87]; this chapter incorporates subsequent
changes to the language. The presentation assumes a basic understanding of object-oriented con-
cepts.

The syntax is described using Extended Backus-Naur Form (EBNF). Terminal symbols appear in
Courier and are enclosed in single quotes; they should appear in code as written (not including
the single quotes). Non-terminal symbols are italicized. The following table describes the meta-
symbols:

A glossary of terms used in this document can be found in Appendix A.

2.1  Objects

Objects are the fundamental entities in SELF; every entity in a SELF program is represented by one
or more objects. Even control is handled by objects: blocks (§2.1.7) are SELF closures used to im-
plement user-defined control structures. An object is composed of a (possibly empty) set of slots
and, optionally, code (§2.1.5). A slot is a name-value pair; slots contain references to other objects.
When a slot is found during a message lookup (§2.3.6) the object in the slot is evaluated.

Although everything is an object in SELF, not all objects serve the same purpose; certain kinds of
objects occur frequently enough in specialized roles to merit distinct terminology and syntax. This
chapter introduces two kinds of objects, namely data objects (“plain” objects) and the two kinds of
objects with code, ordinary methods and block methods.

2.1.1  Syntax

Object literals are delimited by parentheses. Within the parentheses, an object description consists
of a list of slots delimited by vertical bars (‘|’), followed by the code to be executed when the ob-
ject is evaluated. For example:

META-SYMBOL FUNCTION DESCRIPTION

( and ) grouping used to group syntactic constructions

[ and ] option encloses an optional construction

{ and } repetition encloses a construction that may be repeated zero or
more times

| alternative separates alternative constructions

production separates the left and right hand sides of a production
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( | slot1. slot2 | ’here is some code’ printLine )

Both the slot list and code are optional: ‘( | | )’ and ‘()’ each denote an empty object.†

Block objects are written like other objects, except that square brackets (‘ [’ and ‘]’) are used in
place of parentheses:

[ | slot1. slot2 | ’here is some code in a block’ printLine ]

A slot list consists of a (possibly empty) sequence of slot descriptors (§2.2) separated by periods.
A period at the end of the slot list is optional.‡

The code for an object is a sequence of expressions (§2.3) separated by periods. A trailing period
is optional. Each expression consists of a series of message sends and literals. The last expression
in the code for an object may be preceded by the ‘^’ operator (§2.1.8).

2.1.2  Data objects

Data objects are objects without code. Data objects can have any number of slots. For example, the
object () has no slots (i.e., it’s empty) while the object( | x = 17. y = 18 | ) has two slots,
x and y.

A data object returns itself when evaluated.

2.1.3  The assignment primitive

A slot containing the assignment primitive is called an assignment slot (§2.2.2). When an assign-
ment slot is evaluated, the argument to the message is stored in the corresponding data slot (§2.2)
in the same object (the slot whose name is the assignment slot’ s name minus the trailing co lon),
and the receiver (§2.3) is returned as the result. (Note: this means that the value of an assignment
statement is the left-hand side of the assignment statement, not the right-hand side as it is in Small-
talk, C, and many other languages. This is a potential source of confusion for new SELF program-
mers.)

† If you wish to use the empty vertical bar notation to create an empty object, note that the parser currently requires a
space between the vertical bars.
‡ But in that case make sure you put a space after the period, otherwise you will get an obscure error message from
the parser.

y

x 17

18
slots
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2.1.4  Objects with code

The feature that distinguishes a method object from a data object is that it hascode, whereas a data
object does not. Evaluating a method object does not simply return the object itself, as with simple
data objects; rather, its code is executed and the resulting value is returned.

2.1.5  Code

Code is a sequence of expressions (§2.3). These expressions are evaluated in order, and the result-
ing values are discarded except for that of the final expression, whose value determines the result
of evaluating the code.

The actual arguments in a message send are evaluated from left to right before the message is sent.
For instance, in the expression:

1 to: 5 * i By: 2 * j Do: [|:k | k print ]

1 is evaluated first, then5 * i, then 2 * j, and then[|:k | k print]. Finally, the to:By:Do:
message is sent. The associativity and precedence of messages is discussed in section 4.

2.1.6  Methods

Ordinary methods (or simply “methods”) are methods that are not embedded in other code. A
method can have argument slots (§2.2.3) and/or local slots. An ordinary method always has an im-
plicit parent (§2.2.4) ar gument slot named self. Ordinary methods are S ELF’s equivalent of
Smalltalk’s methods.

If a slot contains a method, the following steps are performed when the slot is evaluated as the re-
sult of a message send:

• The method object is cloned, creating a new method activation object containing slots for
the method’s arguments and locals.

• The clone’s self parent slot is initialized to the receiver of the message.

• The clone’s argument slots, if any, are initialized to the values of the corresponding actual
arguments.

• The code of the method is executed in the context of this new activation object.

For example, consider the method ( | :arg | arg * arg ):

This method has an argument slot arg and returns the square of its argument.

:arg

arg * arg

:self*
slots

code
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2.1.7  Blocks

Blocks are SELF closures; they are used to implement user-defined control structures. A block lit-
eral (delimited by square brackets) defines two objects: the block method object, containing the
block’s code, and an enclosing block data object. The block data object contains a parent pointer
(pointing to the object containing the shared behavior for block objects) and a slot containing the
block method object. Unlike an ordinary method object, the block method object does not contain
a self slot. Instead, it has an anonymous parent slot that is initialized to point to the activation ob-
ject for the lexically enclosing block or method. As a result,  implicit-receiver messages (§2.3.4)
sent within a block method are lexically scoped. The block method object’s anonymous parent slot
is invisible at the SELF level and cannot be accessed explicitly.

For example, the block [ 3 + 4 ] looks like:†

The block method’s selector is based on the number of arguments. If the block takes no arguments,
the selector is value. If it takes one argument, the selector is value:. If it takes two arguments,
the selector is value:With:, for three the selector is value:With:With:, and for more the se-
lector is just extended by enough With:’s to match the number of block arguments.

Block evaluation has two phases. In the first phase, a block object is created because the block is
evaluated (e.g., it is used as an ar gument to a message send). The block is cloned and given a
pointer to the activation record for its lexically enclosing scope, the current activation record. In
the second phase, the block’s method is evaluated as a result of sending the block the appropriate
variant of the value message. The block method is then cloned, the ar gument slots of the clone
are filled in, the anonymous parent slot of the clone is initialized using the scope pointer deter-
mined in phase one, and, finally, the block’s code is executed.

It is an error to evaluate a block method after the activation record for its lexically enclosing scope
has returned. Such a block is called a non-lifo block because returning from it would violate the
last-in, first-out semantics of activation object invocation.

This restriction is made primarily to allow activation records to be allocated from a stack. A future
release of S ELF may relax this restriction, at least for blocks that do not access variables in
enclosing scopes.

† All block objects have the same parent, an object containing the shared behavior for blocks.

(lexicalParent)

parent*

value 3 + 4

(parent*)

activation object
enclosing method’s

traits block

block block method
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2.1.8  Returns

A return is denoted by preceding an expression by the ‘ ^’ operator. A return causes the value of
the given expression to be returned as the result of evaluating the method or block. Only the last
expression in an object may be a return.

The presence or absence of the ‘̂ ’ operator does not effect the behavior of ordinary methods, since
an ordinary method always returns the value of its final expression anyway. In a block, however, a
return causes control to be returned from the ordinary method containing that block, immediately
terminating that method’s activation, the block’s activation, and all activations in between. Such a
return is called a non-local return, since it may “return through” a number of activations. The re-
sult of the ordinary method’s evaluation is the value returned by the non-local return. For example,
in the following method:

assertPositive: x = (
x > 0 ifTrue: [ ^ ’ok’ ].
error: ’non-positive x’ )

the error: message will not be sent if x is positive because the non-local return of ‘ok’ causes the
assertPositive: method to return immediately.

2.1.9  Construction of object literals

Object literals are constructed during parsing—the parser converts objects in textual form into real
SELF objects. An object literal is constructed as follows:

• First, the slot initializers of every slot are evaluated from left to right. If a slot initializer con-
tains another object literal, this literal is constructed before the initializer containing it is
evaluated. If the initializer is an expression, it is evaluated in the context of the lobby.

• Second, the object is created, and its slots are initialized with the results of the evaluations
performed in the first step.

Slot initializers are not evaluated in the lexical context, since none exists at parse time; they are
evaluated in the context of an object known as the lobby. That is, the initializers are evaluated as
if they were the code of a method in a slot of the lobby. This two-phase object construction pro-
cess implies that slot initializers may not refer to any other slots within the constructed object (as
with Scheme’s let* and letrec forms) and, more generally, that a slot initializer may not refer
to any textually enclosing object literal.

2.2  Slot descriptors

An object can have any number of slots. Slots can contain data (data slots) or methods. Some slots
have special roles: argument slots are filled in with the actual ar guments during a message send
(§2.3.3), and parent slots specify inheritance relationships (§2.3.8).

A slot descriptor consists of an optional privacy specification, followed by the slot name and an
optional initializer.
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2.2.1  Read-only slots

A slot name followed by an equals sign (‘=’) and an expression represents a read-only slot initial-
ized to the result of evaluating the expression in the root context.

For example, a constant point might be defined as:

( | parent* = traits point.
x = 3 + 4.
y = 5.

| )

The resulting point contains three initialized read-only slots:

2.2.2  Read/write slots

There is no separate assignment operation in SELF. Instead, assignments to data slots are message
sends that invoke the assignment primitive. For example, a data slot x is assignable if and only if
there is a slot in the same object with the same name appended with a colon (in this case,x:), con-
taining the assignment primitive. Therefore, assigning 17 to slot x consists of sending the message
x: 17. Since this is indistinguishable from a message send that invokes a method, clients do not
need to know if x and x: comprise data slot accesses or method invocations.

An identifier followed by a left arrow (the characters ‘<’ and ‘-’ concatenated to form ‘<-’) and
an expression represents an initialized read/write variable (assignable data slot). The object will
contain both a data slot of that name and a corresponding assignment slot whose name is obtained
by appending a colon to the data slot name. The initializing expression is evaluated in the root con-
text and the result stored into the data slot at parse time.

For example, an initialized mutable point might be defined as:

( | parent* = traits point.
x <- 3 + 4.
y <- 5.

| )

x

y

parent*

point traits

7

5
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producing an object with two data slots (x and y) and two assignment slots (x: and y:) containing
the assignment primitive (depicted with ):†

An identifier by itself specifies an assignable data slot initialized to nil.‡ Thus, the slot declaration
x is a shorthand notation for x <- nil.

For example, a simple mutable point might be defined as:

( | x. y. | )

producing:

2.2.3  Slots containing methods

If the initializing expression is an object literal with code, that object is stored into the slotwithout
evaluating the code. This allows a slot to be initialized to a method by storing the method itself,
rather than its result, in the slot.* Methods may only be stored in read-only slots. A method auto-
matically receives a parent argument slot named self. For example, a point addition method can be
written as:

( |
+ = ( | :arg | (clone x: x + arg x) y: y + arg y ).

| )

† In the user interface a read/write slot is depicted as a single slot with a colon labelling the button used to access the
value of the slot; the assignment slot is not shown, to save screen space. In contrast, a read-only slot has an equals
sign on the button.
‡ Nil is a predefined object provided by the implementation. It is intended to indicate “not a useful object.”
* Although a block may be assigned to a slot at any time, it is often not useful to do so: evaluating the slot may result
in an error because the activation record for the block’s lexically enclosing scope will have returned; see §2.1.7.

x

y

parent*

x:

y:

point traits

7

5

x

y

x:

y:

nil
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producing:

A slot name beginning with a colon indicates an argument slot. The prefixed colon is not part of
the slot name and is ignored when matching the name against a message. Ar gument slots are al-
ways read-only, and no initializer may be specified for them. As a syntactic convenience, the argu-
ment name may also be written immediately after the slot name (without the prefixed colon),
thereby implicitly declaring the argument slot. Thus, the following yields exactly the same object
as above:

( |
+ arg = ( (clone x: x + arg x) y: y + arg y ).

| )

The + slot above is a binary slot (§2.3.2), taking one argument and having a name that consists of
operator symbols. Slots like x or y in a point object are unary slots (§2.3.1), which take no argu-
ments and have simple identifiers for names. In addition, there are keyword slots (§2.3.3), which
handle messages that require one or more arguments. A keyword slot name is a sequence of iden-
tifiers, each followed by a colon.

The arguments in keyword methods are handled analogously to those in binary methods: each co-
lon-terminated identifier in a keyword slot name requires a corresponding argument slot in the key-
word method object, and the ar gument slots may be specified either all in the method or all
interspersed with the selector parts.

For example:

( |
ifTrue: False: = ( | :trueBlock. :falseBlock |

trueBlock value ).
| )

and

( |
ifTrue: trueBlock False: falseBlock =

( trueBlock value ).
| )

produce identical objects.

:arg

(clone x: x + arg x)

:self*

y: y + arg y

+
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2.2.4  Parent slots

A unary slot name followed by an asterisk denotes a parent slot. The trailing asterisk is not part of
the slot name and is ignored when matching the name against a message. Except for their special
meaning during the message lookup process (§2.3.8), parent slots are exactly like normal unary
slots; in particular, they may be assignable, allowing dynamic inheritance. Argument slots cannot
be parent slots.

2.2.5  Annotations

In order to provide extra information for the programming environment, S ELF supports annota-
tions on either whole objects or individual slots. Although any object can be an annotation, the
SELF syntax only supports the textual definition of string annotations. In order to annotate an ob-
ject, use this syntax:

( | {} = ’this object has one slot’ snort = 17. | ) }

In order to annotate a group of slots, surround them with braces and insert the annotation after the
opening brace:

( |
{ ’Category: accessing’

getOne = (...).
getAnother = (...).

}

anUnannotatedSlot.
| )

Annotations may nest; if so the Virtual Machine concatenates the annotations strings and inserts a
separator character (16r7f).†

2.3  Expressions

Expressions in SELF are messages sent to some object, the receiver. SELF message syntax is sim-
ilar to Smalltalk’s. SELF provides three basic kinds of messages: unary messages, binary messag-
es, and keyword messages. Each has its own syntax, associativity , and precedence. Each type of
message can be sent either to an explicit or implicit receiver.

Productions:‡

† The current programming environment expects a slot annotation to start with one of a number of keywords, includ-
ing "Category: ", "Comment: ", and "ModuleInfo:". See the programming environment manual for more
details.
‡ In order to simplify the presentation, this grammar is ambiguous; precedence and associativity rules are used to re-
solve the ambiguities.



12

The SELF World Expressions

expression constant | unary-message | binary-message | keyword-message

| ‘(’ expression ‘)’

constant self | number | string | object

unary-message receiver unary-send | resend ‘.’ unary-send

unary-send identifier

binary-message receiver binary-send | resend ‘.’ binary-send

binary-send operator expression

keyword-message receiver keyword-send  | resend ‘.’ keyword-send

keyword-send small-keyword expression { cap-keyword expression }

receiver [ expression ]

resend resend | identifier

The table below summarizes SELF’s message syntax rules:

Parentheses can be used to explicitly specify order of evaluation.

2.3.1  Unary messages

A unary message does not specify any arguments. It is written as an identifier following the receiv-
er.

Examples of unary messages sent to explicit receivers:

17 print
5 factorial

Associativity. Unary messages compose from left to right. An expression to print 5 factorial, for
example, is written:

5 factorial print

MESSAGE ARGUMENTS PRECEDENCE ASSOCIATIVITY SYNTAX

unary 0 highest none [receiver] identifier

binary 1 medium none or [receiver] operator expression
left-to-right *

keyword � 1 lowest right-to-left [receiver] small-keyword expression
{ cap-keyword expression }

* Heterogeneous binary messages have no associativity; homogeneous binary messages associate left-to-right.
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and interpreted as:

(5 factorial) print

Precedence. Unary messages have higher precedence than binary messages and keyword
messages.

2.3.2  Binary messages

A binary message has a receiver and a single argument, separated by a binary operator.

Examples of binary messages:

3 + 4
7 <-> 8

Associativity. Binary messages have no associativity, except between identical operators (which
associate from left to right). For example,

3 + 4 + 7

is interpreted as

(3 + 4) + 7

But

3 + 4 * 7

is illegal: the associativity must be made explicit by writing either

(3 + 4) * 7 or 3 + (4 * 7).

Precedence. The precedence of binary messages is lower than unary messages but higher than key-
word messages. All binary messages have the same precedence. For example,

3 factorial + pi sine

is interpreted as

(3 factorial) + (pi sine)

2.3.3  Keyword messages

A keyword message has a receiver and one or more arguments. It is written as a receiver followed
by a sequence of one or more keyword-argument pairs. The first keyword must begin with a lower
case letter or underscore (‘_’); subsequent keywords must be capitalized. An initial underscore de-
notes that the operation is a primitive. A keyword message consists of the longest possible se-
quence of such keyword-ar gument pairs; the message selector is the concatenation of the
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keywords forming the message. Message selectors beginning with an underscore are reserved for
primitives (§2.3.7).

Example:

5 min: 4 Max: 7

is the single message min:Max: sent to 5 with arguments 4 and 7, whereas

5 min: 4 max: 7

involves two messages: first the message max: sent to 4 and taking7 as its argument, and then the
message min: sent to 5, taking the result of (4 max: 7) as its argument.

Associativity. Keyword messages associate from right to left, so

5 min: 6 min: 7 Max: 8 Max: 9 min: 10 Max: 11

is interpreted as

5 min: (6 min: 7 Max: 8 Max: (9 min: 10 Max: 11))

The association order and capitalization requirements are intended to reduce the number of paren-
theses necessary in SELF code. For example, taking the minimum of two slotsm and n and storing
the result into a data slot i may be written as

i: m min: n

Precedence. Keyword messages have the lowest precedence. For example,

i: 5 factorial + pi sine

is interpreted as

i: ((5 factorial) + (pi sine))

2.3.4  Implicit-receiver messages

Unary, binary, and keyword messages are frequently written without an explicit receiver . Such
messages use the current receiver (self) as the implied receiver. The method lookup, however,
begins at the current activation object rather than the current receiver (see §2.1.4 for details on ac-
tivation objects). Thus, a message sent explicitly to self is not equivalent to an implicit-receiver
send because the former won’t search local slots before searching the receiver. Explicitly sending
messages to self is considered bad style.

Examples:

factorial (implicit-receiver unary message)
+ 3 (implicit-receiver binary message)
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max: 5 (implicit-receiver keyword message)
1 + power: 3 (parsed as 1 + (power: 3))

Accesses to slots of the receiver (local or inherited) are also achieved by implicit message sends to
self. For an assignable data slot namedt, the message t returns the contents, and t: 17 puts 17
into the slot.

2.3.5  Resending messages

A resend allows an overridding method to invoke the overridden method. Directed resends allow
ambiguities among overridden methods to be resolved by constraining the lookup to search a sin-
gle parent slot. Both resends and directed resends may change the name of the message being sent
from the name of the current method, and may pass different arguments than the arguments passed
to the current method. The receiver of a resend or a directed resend must be the implicit receiver.

Intuitively, resend is similar to Smalltalk’s super send and CLOS’ call-next-method.

A resend is written as an implicit-receiver message with the reserved word resend, a period, and
the message name. No whitespace may separate resend, the period, and the message name.

Examples:

resend.display
resend.+ 5
resend.min: 17 Max: 23

A directed resend constrains the resend through a specified parent. It is written similar to a normal
resend, but replaces resend with the name of the parent slot through which the resend is directed.

Examples:

listParent.height
intParent.min: 17 Max: 23

Only implicit-receiver messages may be delegated via a resend or a directed resend.†

2.3.6  Message lookup semantics

This section describes the semantics of message lookups in SELF. In addition to an informal tex-
tual description, the lookup semantics are presented in pseudo-code using the following notation:

s.name The name of slot s.

s.contents The object contained in slot s.

s.isParent True iff s is a parent slot.

† General delegation for explicit receiver messages is supported through primitives in the implementation (see Ap-
pendix 5.B).
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{s obj | pred(s)} The set of all slots of object obj that satisfy predicate pred.

| S | The cardinality of set S.

The message sending semantics are decomposed into the following functions:

send(rec, sel, args) The message send function (§2.3.7).

lookup(obj, rec, sel, V) The lookup algorithm (§2.3.8).

undirected_resend(...) The undirected message resend function (§2.3.9).

directed_resend(...) The directed message resend function (§2.3.9).

eval(rec, M, args) The slot evaluation function as described informally throughout
§2.1.

2.3.7  Message send

There are two kinds of message sends: a primitive send has a selector beginning with an under-
score (‘_’) and calls the corresponding primitive operation. Primitives are predefined functions
provided by the implementation. A normal send does a lookup to obtain the tar get slot; if the
lookup was successful, the slot is subsequently evaluated. If the slot contains a data object, then the
data object is simply returned. If the slot contains the assignment primitive, the ar gument of the
message is stored in the corresponding data slot. Finally, if the slot contains a method, an activation
is created and run as described in §2.1.6.

If the lookup fails, the lookup error is handled in an implementation-defined manner; typically, a
message indicating the type of error is sent to the object which could not handle the message.

The function send(rec, sel, args) is defined as follows:

Input: rec, the receiver of the message
sel, the message selector
args, the actual arguments

Output: res, the result object

Algorithm:

if begins_with_underscore(sel)
then invoke_primitive(rec, sel, args) “primitive call”

else M lookup(rec, sel, ) “do the lookup”

case
| M | = 0: error: message not understood
| M | = 1: res eval(rec, M, args) “see §2.1”

| M | > 1: error: ambiguous message send
end

end
return res
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2.3.8  The lookup algorithm

The lookup algorithm recursively traverses the inheritance graph, which can be an arbitrary graph
(including cyclic graphs). No object is searched twice along any single path. The search begins in
the object itself and then continues to search every parent. Parent slots are not evaluated during the
lookup. That is, if a parent slot contains an object with code, the code will not be executed; the ob-
ject will merely be searched for matching slots.

The function lookup(obj, sel, V) is defined as follows:

Input: obj, the object being searched for matching slots
sel, the message selector
V, the set of objects already visited along this path

Output: M, the set of matching slots

Algorithm:

if obj V
then M “cycle detection”

else M  {s obj | s.name = sel} “try local slots”

if M = then M parent_lookup(obj, sel, V) end “try parent slots”

end
return M

Where parent_lookup(obj, sel, V) is defined as follows:

P  {s obj | s.isParent} “all parents”

M lookup(s.contents, sel, V  {obj}) “recursively search parents”

return M

2.3.9  Undirected Resend

An undirected resend ignores the sending method holder (the object containing the currently run-
ning method) and continues with its parents.

The function undirected_resend(rec, smh, sel, args) is defined as follows:

Input: rec, the receiver of the message
smh, the sending method holder
sel, the message selector
args, the actual arguments

Output: res, the result object

Algorithm:

M parent_lookup(smh, sel, ) “do the lookup”

case
| M | = 0: error: message not understood
| M | = 1: res eval(rec, M, args) “see §2.1”

s P
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| M | > 1: error: ambiguous message send
end
return res

2.3.10  Directed Resend

A directed resend looks only in one slot in the sending method holder.

The function directed_resend(rec, smh, del, sel, args) is defined as follows:

Input: rec, the receiver of the message
smh, the sending method holder
del, the name of the delegatee
sel, the message selector
args, the actual arguments

Output: res, the result object

Algorithm:

D  {s smh | s.name = del} “find delegatee”

if | D | = 0 then error: missing delegatee “one or none”

M lookup(smh.del, sel, ) “do the lookup”

case
| M | = 0: error: message not understood
| M | = 1: res eval(rec, M, args) “see §2.1”

| M | > 1: error: ambiguous message send
end
return res

2.4  Lexical elements

This chapter describes the lexical structure of S ELF programs—how sequences of characters in
SELF source code are grouped into lexical tokens. In contrast to syntactic elements described by
productions in the rest of this document, the elements of lexical EBNF productions may not be sep-
arated by whitespace, i.e. there may not be whitespace within a lexical token. Tokens are formed
from the longest sequence of characters possible. Whitespace may separate any two tokens and
must separate tokens that would be treated as one token otherwise.

2.4.1  Character set

SELF programs are written using the following characters:

• Letters. The fifty-two upper and lower case letters:
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

• Digits. The ten numeric digits: 0123456789
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• Whitespace. The formatting characters: space, horizontal tab (ASCII HT), newline (NL),
carriage return (CR), vertical tab (VT), backspace (BS), and form feed (FF). (Comments are
also treated as whitespace.)

• Graphic characters. The 32 non-alphanumeric characters:
!@#$%^&*()_-+=|\~‘{}[]:;"’<>,.?/

2.4.2  Identifiers

An identifier is a sequence of letters, digits, and underscores (‘_’) beginning with a lowercase letter
or an underscore. Case is significant: apoint is not the same as aPoint.

Productions:

small-letter ‘a’ | ‘b’ | ... | ‘z’

cap-letter ‘A’ | ‘B’ | ... | ‘Z’

letter small-letter | cap-letter

identifier (small-letter | ‘_’) {letter | digit | ‘_’}

Examples: i _IntAdd cloud9 m a_point

The two identifiers self and resend are reserved. Identifiers beginning with underscores are re-
served for primitives.

2.4.3  Keywords

Keywords are used as slot names and as message names. They consist of an identifier or a capital-
ized identifier followed by a colon (‘:’).

Productions:

small-keyword identifier ‘:’

cap-keyword cap-letter {letter | digit | ‘_’} ‘:’

Examples: at: Put: _IntAdd:

2.4.4  Arguments

A colon followed by an identifier denotes an argument slot name.

Production:

arg-name ‘:’ identifier

Example: :name
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2.4.5  Operators

An operator consists of a sequence of one or more of the following characters:

! @ # $ % ^ & * - + = ~ / ? < > , ; | ‘ \

Two sequences are reserved and are not operators:

| ^

Productions:

op-char ‘!’ | ‘@’ | ‘#’ | ‘$’ | ‘%’ | ‘^’ | ‘&’ | ‘*’ | ‘-’ | ‘+’ | ‘=’ | ‘~’ | ‘/’ | ‘?’ |

‘<’ | ‘>’ | ‘,’ | ‘;’ | ‘|’ | ‘‘’ | ‘\’

operator op-char {op-char}

Examples: + - && || <-> % # @ ^

2.4.6  Numbers

Integer literals are written as a sequence of digits, optionally prefixed with a minus sign and/or a
base.† No whitespace is allowed between a minus sign and the digit sequence.‡ Real constants may
be either written in fixed-point or exponential form.

Integers may be written using bases from 2 to 36. For bases greater than ten, the characters ‘ a’
through ‘z’ (case insensitive) represent digit values 10 through 35. The default base is decimal. A
non-decimal number is prefixed by its base value, specified as a decimal number followed by either
‘r’ or ‘R’.

Real numbers may be written in decimal only. The exponent of a floating-point format number in-
dicates multiplication of the mantissa by 10 raised to the exponent power; i.e.,

nnnnEddd = nnnn  10ddd

A number with a digit that is not appropriate for the base will cause a lexical error, as will an inte-
ger constant that is too large to be represented. If the absolute value of a real constant is too large
or too small to be represented, the value of the constant will be infinity or zero, respectively.

Productions:

number [ ‘-’ ] (integer | real)

integer [base] general-digit {general-digit}

† Unlike Smalltalk, integer literals are limited in range to smallInts.
‡ In situations where parsing the minus sign as part of the number would cause a parse error (for example, in the ex-
pression a-1), the minus is interpreted as a binary message (a - 1).
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real fixed-point | float

fixed-point decimal ‘.’ decimal

float decimal [ ‘.’ decimal ] (‘e’ | ‘E’) [ ‘+’ | ‘-’ ] decimal

general-digit digit | letter

decimal digit {digit}

base decimal (‘r’ | ‘R’)

Examples: 123 16r27fe 1272.34e+15 1e10

2.4.7  Strings

String constants are enclosed in single quotes (‘’’). With the exception of single quotes and escape
sequences introduced by a backslash (‘ \’), all characters (including formatting characters like
newline and carriage return) lying between the delimiting single quotes are included in the string.†

To allow single quotes to appear in a string and to allow non-printing control characters in a string
to be indicated more visibly, SELF provides C-like escape sequences:

\t tab \b backspace \n newline

\f form feed \r carriage return \v vertical tab

\a alert (bell) \0 null character \\ backslash

\’ single quote \" double quote \? question mark

A backslash followed by an ‘x’, ‘d’, or ‘o’ specifies the character with the corresponding numeric
encoding in the ASCII character set:

\xnn hexadecimal escape
\dnnn decimal escape
\onnn octal escape

There must be exactly two hexadecimal digits for hexadecimal character escapes, and exactly three
digits for decimal and octal character escapes. Illegal hexadecimal, decimal, and octal numbers, as
well as character escapes specifying ASCII values greater than 255 will cause a lexical error.

For example, the following characters all denote the carriage return character (ASCII code 13):

\r \x0d \d013 \o015

A long string may be broken into multiple lines by preceding each newline with a backslash. Such
escaped newlines are ignored during formation of the string constant.

† When typing strings in, the graphical user interface accepts multi-line strings, but the character -based read-eval-
print loop does not.
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A backslash followed by any other character than those listed above will cause a lexical error.

Productions:

string ‘’’ { normal-char | escape-char } ‘’’

normal-char any character except ‘\’ and ‘’’

escape-char ‘\t’ | ‘\b’ | ‘\n’ | ‘\f’ | ‘\r’ | ‘\v’ | ‘\a’ | ‘\0’ | ‘\\’ | ‘\’’ | ‘\"’ |

‘\?’ | numeric-escape

numeric-escape ‘\x’ general-digit general-digit | ( ‘\d’ | ‘\o’ ) digit digit digit

2.4.8  Comments

Comments are delimited by double quotes (‘"’). Double quotes may not themselves be embedded
in the body of a comment. All characters (including formatting characters like newline and car-
riage return) are part of the body of a comment.

Productions:

comment ‘"’ { comment-char } ‘"’

comment-char any character except ‘"’

Example: "this is a comment"
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Appendix 2.A Glossary

• A slot is a name-value pair. The value of a slot is often called its contents.

• An object is composed of a (possibly empty) set of slots and, optionally, a series of expressions
called code. The SELF implementation provides objects with indexable slots (vectors) via a set
of primitives.

• A data object is an object without code.

• A data slot  is a slot holding a data object. An assignment slot is a slot containing the
assignment primitive. An assignable data slot is a data slot for which there is a corresponding
assignment slot whose name consists of the data slot’s name followed by a colon. When an
assignment slot is evaluated its argument is stored in the corresponding data slot.

• An ordinary method (or simply method) is an object with code and is stored as the contents of a
slot. The method’s name (also called its selector) is the name of the slot in which it is stored.

• A block is an object representing a lexically-scoped closure (similar to a Smalltalk block).

• A block method is the method that is executed when a block is evaluated by sending it value,
value:, value:With:, etc. A block method is a special kind of method that is evaluated
within the scope of its method and any lexically enclosing blocks.

• An activation object records the state of an executing method or block method. It is a clone of
the method prototype used to store the method’s arguments and local slots during execution.
There are two kinds of activation objects: ordinary method activation objects (or simply meth-
od activation objects) and block method activation objects.

• A non-lifo block is a block that is evaluated after the activation of its lexically enclosing block
or method has returned. This results in an error in the current implementation.

• A non-local return is a return from a method activation resulting from performing a return (i.e.,
evaluating an expression preceded by the ‘^’ operator) from within a lexically enclosed block.
A non-local return forces returns from all activations between the method activation and the
activation of the block performing the return.

• The method holder of a method is the object containing the slot holding that method.

• The sending method holder of a message is the method holder of the method that sent it.

• A message is a request to an object to perform some operation. The object to which the request
is sent is called the receiver. A message send is the action of sending a message to a receiver.

• A primitive send is a message handled by invoking a primitive, a predefined function provided
by the SELF implementation.

• Messages that do not have an explicit receiver are known as implicit-receiver messages. The
receiver is bound to self.

• A unary message is a message consisting of a single identifier sent to a receiver. A binary mes-
sage is a message consisting of an operator and a single argument sent to a receiver. Akeyword
message is a message consisting of one or more identifiers with trailing colons, each followed
by an argument, sent to a receiver.
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• Unary, binary, and keyword slots are slots with selectors that match unary, binary, and key-
word messages, respectively.

• An argument slot is a slot in a method filled in with a value when the method is invoked.

• Message lookup is the process by which objects determine how to respond to a message (which
slot to evaluate), by searching objects for slots matching the message.

• Inheritance is the mechanism by which message lookup searches objects for slots when the re-
ceiver’s slots are exhausted. An object’s parent slots contain objects that it inherits from.

• Dynamic inheritance is the modification of object behavior by setting an assignable parent slot.

• A resend allows a method to invoke the method that the first method (the one that invokes the
resend) is overriding. A directed resend constrains the lookup to search a single parent slot.

• Cloning is the primitive operation returning an exact shallow copy (a clone) of an object, i.e. a
new object containing exactly the same slots and code as the original object.

• A prototype is an object that is used as a template from which new objects are cloned.

• A traits object is a parent object containing shared behavior, playing a role somewhat similar
to a class in a class-based system. Any SELF implementation is required to provide traits ob-
jects for integers, floats, strings, and blocks (i.e. one object which is the parent of all integers,
another object for floats, etc.).

• The root context is the object that provides the context (i.e., set of bindings) in which slot
initializers are evaluated. This object is known as the lobby. During slot initialization, self is
bound to the lobby. The lobby is also the sending method holder for any sends in the initializ-
ing expression.

• Nil is the object used to initialize slots without explicit initializers. It is intended to indicate
“not a useful object.” This object is provided by the SELF implementation.
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Appendix 2.B Lexical overview

small-letter ‘a’ | ‘b’ | ... | ‘z’

cap-letter ‘A’ | ‘B’ | ... | ‘Z’

letter small-letter | cap-letter

identifier (small-letter | ‘_’) {letter | digit | ‘_’}

small-keyword identifier ‘:’

cap-keyword cap-letter {letter | digit | ‘_’} ‘:’

argument-name ‘:’ identifier

op-char ‘!’ | ‘@’ | ‘#’ | ‘$’ | ‘%’ | ‘^’ | ‘&’ | ‘*’ | ‘-’ | ‘+’ | ‘=’ | ‘~’ | ‘/’ | ‘?’ |

‘<’ | ‘>’ | ‘,’ | ‘;’ | ‘|’ | ‘‘’ | ‘\’

operator op-char {op-char}

number [ ‘-’ ] (integer | real)

integer [base] general-digit {general-digit}

real fixed-point | float

fixed-point decimal ‘.’ decimal

float decimal [ ‘.’ decimal ] (‘e’ | ‘E’) [ ‘+’ | ‘-’ ] decimal

general-digit digit | letter

decimal digit {digit}

base decimal (‘r’ | ‘R’)

string ‘’’ { normal-char | escape-char } ‘’’

normal-char any character except ‘\’ and ‘’’

escape-char ‘\t’ | ‘\b’ | ‘\n’ | ‘\f’ | ‘\r’ | ‘\v’ | ‘\a’ | ‘\0’ | ‘\\’ | ‘\’’ | ‘\"’ |

‘\?’ | numeric-escape

numeric-escape ‘\x’ general-digit general-digit | ( ‘\d’ | ‘\o’ ) digit digit digit

comment ‘"’ { comment-char } ‘"’

comment-char any character but ‘"’
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Appendix 2.C Syntax overview†

expression constant | unary-message | binary-message | keyword-message

| ‘(’ expression ‘)’

constant self | number | string | object

unary-message receiver unary-send | resend ‘.’ unary-send

unary-send identifier

binary-message receiver binary-send | resend ‘.’ binary-send

binary-send operator expression

keyword-message receiver keyword-send | resend ‘.’ keyword-send

keyword-send small-keyword expression { cap-keyword expression }

receiver [ expression ]

resend resend | identifier

object regular-object | block

regular-object ‘(’ [ ‘|’ [ ‘{’ ‘}’ ‘=’ string ] slot-list ‘|’ ] [ code ] ‘)’

block ‘[’ [ ‘|’ slot-list ‘|’ ] [ code ] ‘]’

slot-list { unannotated-slot-list | annotated-slot-list }

annotated-slot-list ‘{’ string slot-list ‘}’

unannotated-slot-list { slot ‘.’} slot [ ‘.’ ]

code { expression ‘.’} [ ‘^’ ] expression [ ‘.’ ]

slot arg-slot | data-slot | binary-slot | keyword-slot

arg-slot argument-name

data-slot slot-name

| slot-name ‘<-’ expression

| slot-name ‘=’ expression

unary-slot slot-name ‘=’ regular-object

binary-slot operator ‘=’ regular-object

| operator [identifier] ‘=’ regular-object

† In order to simplify the presentation, this grammar is ambiguous; precedence and associativity rules are used to re-
solve the ambiguities.
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keyword-slot small-keyword {cap-keyword} ‘=’ regular-object

| small-keyword identifier {cap-keyword identifier}

 ‘=’ regular-object

slot-name identifier | parent-name

parent-name identifier ‘*’
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Appendix 2.D Built-in types

There are a small number of built-in types that are directly supported through primitives and syn-
tax:

Integers and floats are provided with primitives for performing arithmetic operations, comparisons
etc.

Strings have a byte vector part for storing the characters. Special string primitives are provided.

Blocks are objects which combine code with an environment link. Used for control structures, they
are described in section [2.1.7].

In addition, there are a number of VM-supported types described in the sections on the S ELF
World and the VM reference manual, such as mirrors, processes, vectors, proxies and profilers.
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3  The SELF World

The default SELF world is a set of useful objects, including objects that can be used in application
programs (e.g., integers, strings, and collections), objects that support the programming environ-
ment (e.g., the debugger), and objects that simply are used to organize the other objects. This doc-
ument describes how this world is organized, focusing primarily on those objects meant for use in
SELF programs. It does not discuss the objects used to implement system facilities—for example,
there is no discussion of the objects used to implement the graphical user interface—nor does it
discuss how to use programming support objects such as the command history object; such tools
are described in The SELF User’s Manual.

The reader is assumed to be acquainted with the S ELF language, the use of multiple inheritance,
the use of traits objects and prototype objects, and the organizing principles of the SELF world as
discussed in [UCC91].
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3.1  World Organization

3.1.1  The Lobby

The lobby object is thus named because it is where objects enter the S ELF world. For example,
when a script that creates a new object is read into the system, all expressions in that script are
evaluated in the context of the lobby. That is, the lobby is the receiver of all messages sent to “self”
by expressions in the script. To refer to some existing object in a script, the object must be acces-
sible by sending a message to the lobby. For example, the expression:

_AddSlots: ( | newObject = ( |  entries <- list copy ...  | )  | )

requires that the message list be understood by the lobby (the implicit receiver of the message)
so that the entries slot of the new object can be initialized. The lobby slots traits, globals,
and mixins are the roots of the object namespaces accessible from the lobby. The organization of
these namespaces is described in the next section. The slot lobby allows the lobby itself to be re-
ferred by name

The lobby also has a number of other functions: it is the location of the default behavior inherited
by most objects in the system (slot defaultBehavior).

3.1.2  Names and Paths

For convenience, the lobby’s namespace is broken into three pieces, implemented as separate ob-
jects rooted at the lobby:

• traits objects that encapsulate shared behavior. Typically, each prototype object
has an associated traits object of the same name that describes the shared
part of its behavior.

• globals prototypical objects and one-of-a-kind objects (“oddballs”)

• mixins small, parentless bundles of behavior designed to be “mixed into” some
other object

Each of these namespace objects is categorized to aid navigation.

For example, to find the parent of the prototype list object, one could start with the globals slot
of the lobby, then get the list slot of that object, and then the parent slot of the list. The se-
quence of slot names, globals list parent is called a path and constitutes the list parent’s
full name. Parent slots can be omitted from an object’s full name, since the slots in a parent are vis-
ible in the child via inheritance. A path with parent slots omitted forms the short name for an ob-
ject. For example, the short name for the list parent is simply list parent.

Non-parent slots are used when it is desirable to keep a part of the name space distinct. For exam-
ple, the traits slot of the lobby is not a parent slot. This allows a convention that gives proto-
types and their associated traits objects similar names: a prototype and its associated traits object
have the same local name, but the prototype is placed in a slot in theglobals object, whereas the
traits of the prototype is placed in a slot in the traits object. Since the traits slot of the lobby
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is not a parent slot, the name of the traits object must start with the prefix traits. The globals
slot, on the other hand, is a parent slot, so the name of a prototype object needs no prefix. Thus,
list refers to the prototype list while traits list refers to its traits object for lists.

As a matter of style, programs should refer to objects by the shortest possible name. This makes it
easier to re-organize the global namespace as the system evolves. (If programs used full path
names, then many more names would have to be updated to reflect changes to the namespace or-
ganization, a tedious chore.)

3.2  The Roots of Behavior

3.2.1  Default Behavior

Certain common behavior is shared by nearly all objects in the SELF world. This basic behavior is
defined in the defaultBehavior slot of the lobby and includes:

• identity comparisons (== and !==)

• inequality (!=)

• default behavior for printing (reimplement printString in descendants)

• mirror creation (reflect:)

• support for point, and list construction (@ and &)

• behavior that allows blocks to ignore extra arguments

• behavior that allows an object to behave like a block that evaluates to that object (this per-
mits a non-block object to be passed to a method that expects a block)

• behavior that allows an object to be its own key in a collection (key)

• default behavior for doubly-dispatched messages

• behavior for printing error messages and stack dumps (error: and halt)

It is important to note that not all objects in the system inherit this default behavior . It is entirely
permissible to construct objects that do not inherit from the lobby , and the SELF world contains
quite a few such objects. For example, the objects used to break a namespace into separate catego-
ries typically do not inherit from the lobby. Any program intended to operate on arbitrary objects,
such as a debugger, must therefore assume that the objects it manipulates do not understand even
the messages in defaultBehavior.

Modules: defaultBehavior, errorHandling

3.2.2  The Root Traits: Traits Clonable and Traits Oddball

Most concrete objects in the S ELF world are descendants of one of two top-level traits objects:
traits clonable and traits oddball. The distinction between the two is based on whether
or not the object is unique. For example, true is a unique object. There is only one true object
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in the entire system, although there are many references to it. On the other hand, a list object is not
unique. There may be many lists in the system, each containing different elements. A unique object
responds to the message copy by returning itself and uses identity to test for equality. The general
rule is:

• unique objects usually inherit from traits oddball

• non-unique objects usually inherit from traits clonable

Module: rootTraits

3.2.3  Mixins

Like traits objects, mixin objects encapsulate a bundle of shared behavior . Unlike traits objects,
however, mixin objects are generally parentless to allow their behavior to be added to an object
without necessarily also adding unwanted behavior (such as access to the lobby namespace). Mix-
ins are generally used in objects that also have other parents. An example is mixins identity.

3.2.4  The Identity Mixin

Two objects are usually tested for equality based on whether they have “the same value” within a
common domain. For example, 3.0 = 3 within the domain of numbers, even though they are not
the same object or even the same kind of object. In some domains, however, two objects are equal
if and only if they are the exact same object. For example, even two process objects with the same
state are not considered equal unless they are identical. In such cases, identity comparison is used
to implement equality tests, and mixins identity can be mixed in to get the desired behavior.

Module: rootTraits

3.3  Blocks, Booleans, and Control Structures

A block is a special kind of object containing a sequence of statements. When a block is evaluated
by being sent an acceptable value message, its statements are executed in the context of the cur-
rent activation of the method in which the block is declared. This allows the statements in the block
to access variables local to the block’s enclosing method and any enclosing blocks in that method.
(This set of variables comprises the lexical scope of the block.) It also means that within the block,
self refers to the receiver of the message that activated the method, not to the block object itself.
A return statement in a block causes a return from the block’ s enclosing method. (See the S ELF
Language Reference for a more thorough discussion of block semantics.)

A block can take an arbitrary number of arguments and can have its own local variables, as well as
having access to the local variables of its enclosing method. The statements in the block are exe-
cuted when the block is sent a message of the form “value[:{With:}]”, where the number of co-
lons in the message is at least the same as the number of ar guments the block takes (extra
arguments are ignored, but it is an error to provide too few). For example, the following block
takes two arguments:
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[| :arg1. :arg2 |  arg1 + arg2 ]

and can be evaluated by sending it the message value:With: to produce the sum of its ar gu-
ments. Blocks are used to implement all control structures in S ELF and allow the programmer to
easily extend the system with customized control structures. In fact, all control stuctures in SELF
except message sends, returns, and VM error handling are implemented using blocks.

3.3.1  Booleans and Conditionals

The fundamental control structure is the conditional. In SELF, the behavior of conditionals is de-
fined by two unique boolean objects, true and false. Boolean objects respond to the messages
ifTrue:, ifFalse:, ifTrue:False:, and ifFalse:True: by evaluating the appropriate ar-
gument block. For example, true implements ifTrue:False: as:

ifTrue: b1 False: b2 = ( b1 value )

That is, when true is sent ifTrue:False:, it evaluates the first block and ignores the second.
For example, the following expression evaluates to the absolute value of x:

x < 0   ifTrue:  [ x negate ] False: [ x ]

The booleans also define behavior for the logical operations AND (&&), OR (||), EXCLUSIVE-OR

(^^), and NOT (not). Because the binary boolean operators all sendvalue to their argument when
necessary, they can also be used for “short-circuit” evaluation by supplying a block, e.g.:

(0 <= i) && [i < maxByte pred] ifTrue: [...

Module: boolean

3.3.2  Loops

The various idioms for constructing loops in SELF are best illustrated by example.

Here is an endless loop:

[ ... ] loop

Here are two loops that test for their termination condition at the beginning of the loop:

[ proceed ]  whileTrue:  [ ... ]
[ quit    ]  whileFalse: [ ... ]

In each case, the block that receives the message repeatedly evaluates itself and, if the termination
condition is not yet met, evaluates the ar gument block. The value returned by both loop expres-
sions is nil.

It is also possible to put the termination test at the end of the loop, ensuring that the loop body is
executed at least once:
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[ ... ]  untilTrue:  [ quit    ]
[ ... ]  untilFalse: [ proceed ]

Here is a loop that exits from the middle when quit becomes true:

[| :exit | ... quit  ifTrue: exit ... ] loopExit

For the incurably curious: the parameter to the user’s block, supplied by theloopExit  method, is simply a block that
does a return from the loopExit method. Thus, the loop terminates when exit value is evaluated. The con-
structs loopExitValue, exit, and exitValue are implemented in a similar manner.

The value returned by the overall “[...] loopExit” expression is nil. Here is a loop expres-
sion that exits and evaluates to a value determined by the programmer when quit becomes true:

[| :exit | ... quit  ifTrue:  [ exit value: expr ] ] loopExitValue

Module: block

3.3.3  Block Exits

It is sometimes convenient to exit a block early, without executing its remaining statements. The
following constructs support this behavior:

[| :exit | ... quit  ifTrue: exit ... ] exit
[| :exit | ... quit  ifTrue: [ exit value: expr ] ... ] exitValue

The first expression evaluates to nil if the block exits early; the second allows the programmer to
define the expression’s value when the block exits early. Note: These constructs should not be con-
fused with their looping counterparts loopExit and loopExitValue.

Module: block

3.3.4  Other Block Behavior

Blocks have some other useful behavior:

• One can determine the time in milliseconds required to execute a block using various ways
of measuring time using the messages userTime, systemTime, cpuTime, and real-
Time.

• One can profile the execution of a block using the messages profile and flatProfile.
profile prints out the source level call graph annotated with call site and timing informa-
tion whereas flatProfile prints out a flat profile sorted by module.

• The message countSends will collect lookup statistics during a block execution.

Any object that inherits from the lobby can be passed to a method that expects a block; behavior
in defaultBehavior makes the object behave like a block that evaluates to that object.

Module: block
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3.4  Numbers and Time

The SELF number traits form the hierarchy shown below . (In this and subsequent hierarchy de-
scriptions, indentation indicates that one traits object is a child of another . The prefix “traits” is
omitted since these hierarchy descriptions always describe the interrelationship between traits ob-
jects. In most cases, leaf traits are concrete and have an associated prototype with the same name.)

orderedOddball
number

float
integer

smallInt
bigInt

traits number defines behavior common to all numbers, such as successor, succ, prede-
cessor, pred, absoluteValue, negate, double, half, max:, and min:. traits num-
ber inherits fromtraits orderedOddball , so sendingcopy or clone to a number returns the
number itself. traits integer defines behavior common to all integers such aseven, odd, and
factorial. There are four division operators for integers that allow the programmer to control
how the result is truncated or rounded. Integers also include behavior for iterating through a sub-
range, including:

to:Do:
to:By:Do:
to:ByNegative:Do:
upTo:Do:
upTo:By:Do:
downTo:Do:
downTo:By:Do:

Relevant oddballs:

• infinity IEEE floating-point infinity

• minSmallInt smallest smallInt in this implementation

• maxSmallInt biggest smallInt in this implementation

Modules: number, float, integer, smallInt, bigInt

3.4.1  Random Numbers

clonable
random

randomLC
prototypes random

Traits random defines the abstract behavior of random number generators. A random number
generator can be used to generate random booleans, integers, floats, characters or strings. traits
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randomLC defines a concrete specialization based on a simple linear congruence algorithm. For
convenience, the prototype for randomLC is “random,” not “randomLC”.

Modules: random

3.4.2  Time

clonable
time

A time object represents a date and time (to the nearest millisecond) since midnight GMT on Jan-
uary 1, 1970. The message current returns a new time object containing the current time. Two
times can be compared using the standard comparison operators. One time can be subtracted from
another to produce a value in milliseconds. An of fset in milliseconds can be added or subtracted
from a time object to produce a new time object. However , it is an error to add two time objects
together.

Modules: time

3.5  Collections

clonable
collection

... collection hierarchy ...

Collections are containers that hold zero or more other objects. In S ELF, collections behave as if
they have a key associated with each value in the collection. Collections without an obvious key,
such as lists, use each element as both key and value. Iterations over collections always pass both
the value and the key of each element (in that order) to the iteration block. Since SELF blocks ig-
nore extra arguments, this allows applications that don’t care about keys to simply provide a block
that takes only one argument.

Collections have a rich protocol. Additions are made withat:Put:, or withadd: or addAll: for
implicitly keyed collections. Iteration can be done with do: or with variations that allow the pro-
grammer to specify special handling of the first and/or last element. with:Do: allows pairwise it-
eration through two collections. The includes:, occurrencesOf:, and findFirst:
IfPresent:IfAbsent: messages test for the presence of particular values in the collection.
filterBy:Into: creates a new collection including only those elements that satisfy a predicate
block, while mapBy:Into: creates a new collection whose elements are the result of applying the
argument block to each element of the original collection.

Abstract collection behavior is defined in traits collection. Only a small handful of operations need
be implemented to create a new type of collection; the rest can be inherited from traits col-
lection. (See the descendantResponsibility slot of traits collection.) The follow-
ing sections discuss various kinds of collection in more detail.

Modules: collection (abstract collection behavior)
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3.5.1  Indexable Collections

collection
indexable

mutableIndexable
byteVector

...the string hierarchy
sequence

sortedSequence
vector

Indexable collections allow random access to their elements via keys that are integers. All se-
quences and vectors are indexable. The message at: is used to retrieve an element of an index-
able collection while at:Put: is used to update an element of a mutableIndexable collection
(other than a sortedSequence).

Modules: indexable, abstractString, vector, sequence, sortedSequence

3.5.2  Strings, Characters, and Paragraphs

collection
...
byteVector

string
mutableString
immutableString

canonicalString

A string is a vector whose elements are character objects. There are three kinds of concrete string:
immutable strings, mutable strings and canonical strings. traits string defines the behavior
shared by all strings. A character is a string of length one that references itself in its sole indexable
slot.

Mutable strings can be changed using the messageat:Put:, which takes a character argument, or
at:PutByte:, which takes an integer ar gument. An immutable string cannot be modified, but
sending it the copyMutable message returns a mutable string containing the same characters.

Canonical strings are registered in an table inside the virtual machine, like Symbol objects in
Smalltalk or atoms in LISP. The VM guarantees that there is at most one canonical string for any
given sequence of bytes, so two canonical strings are equal (have the same contents) if and only if
they are identical (are the same object). This allows ef ficient equality checks between canonical
strings. All message selectors and string literals are canonical strings, and some primitives require
canonical strings as arguments. Sending canonicalize to any string returns the corresponding
canonical string.

Character objects behave like immutable strings of length one. There are 256 well-known charac-
ter objects in the SELF universe. They are stored in a 256-element vector namedascii, with each
character stored at the location corresponding to its ASCII value. Characters respond to the mes-



38

The SELF World Collections

sage asByte by returning their ASCII value (that is, their index inascii). The inverse of asBy-
te, asCharacter, can be sent to an integer between 0 and 255 to obtain the corresponding
character object.

Module: string

3.5.3  Unordered Sets and Dictionaries

collection
setOrDictionary

set
sharedSet

dictionary
sharedDictionary

There are two implementations of sets and dictionaries in the system. The one described in this
section is based on hash tables. The one discussed in the following section is based on sorted bina-
ry trees. The hash table implementation has better performance over a wide range of conditions.
(An unfortunate ordering of element addtions can cause the unbalanced trees used in the tree ver-
sion to degenerate into an ordered lists, resulting in linear access times.)

A set behaves like a mathematical set. It contains elements without duplication in no particular or-
der. A dictionary implements a mapping from keys to values, where both keys and values are arbi-
trary objects. Dictionaries implement the usual collection behavior plus keyed access using at:
and at:Put: and the dictionary-specific operations includesKey: and removeKey:. In order
to store an object in a set or use it as a dictionary key , the object must understand the messages
hash and =, the latter applying to any pair of items in the collection. This is because sets and dic-
tionaries are implemented as hash tables.

Derived from set and dictionary aresharedSet  andsharedDictionary . These provide locking
to maintain internal consistency in the presence of concurrency.

Modules: setAndDictionary, sharedSetAndDictionary

3.5.4  Tree-Based Sets and Dictionaries

collection
tree

treeNodes abstract
treeNodes bag
treeNodes set

emptyTrees abstract
emptyTrees bag
emptyTrees set

treeSet and treeBag implement sorted collections using binary trees. The set variant ignores
duplicates, while the bag variant does not. Tree sets and bags allow both explicit and implicit keys
(that is, adding elements can be done with eitherat:Put: or add:), where a tree set that uses ex-
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plicit keys behaves like a dictionary. Sorting is done on explicit keys if present, values otherwise,
and the objects sorted must be mutually comparable. Comparisons between keys are made using
compare:IfLess:Equal:Greater:.

The implementation of trees uses dynamic inheritance to distinguish the differing behavior of emp-
ty and non-empty subtrees. The prototype treeSet represents an empty (sub)tree; when an ele-
ment is added to it, its parent is switched fromtraits emptyTrees set, which holds behavior
for empty (sub)trees, to a new copy of treeSetNode, which represents a tree node holding an el-
ement. Thus, the treeSet object now behaves as atreeSetNode object, with right and left sub-
trees (initially copies of the empty subtree treeSet). Dynamic inheritance allows one object to
behave modally without using clumsy if-tests throughout every method.

One caveat: since these trees are not balanced, they can degenerate into lists if their elements are
added in sorted order. However, a more complex tree data structure might obscure the main point
of this implementation: to provide a canonical example of the use of dynamic inheritance.

Modules: tree

3.5.5  Lists and PriorityQueues

collection
list
priorityQueue

A list is an unkeyed, circular, doubly-linked list of objects. Additions and removals at either end
are efficient, but removing an object in the middle is less so, as a linear search is involved..

A priorityQueue is an unkeyed, unordered collection with the property that the element with the
highest priority is always at the front of the queue. Priority queues are useful for sorting (heapsort)
and scheduling. The default comparison uses <, but this can be changed.

Modules: list. priorityQueue

3.5.6  Constructing and Concatenating Collections

clonable
collector

Two kinds of objects play supporting roles for collections. A collector object is created using
the & operator (inherited from defaultBehavior), and represents a collection under construc-
tion. The & operator provides a concise syntax for constructing small collections. For example:

(1 & ’abc’ & x) asList

constructs a list containing an integer, a string, and the object x. A collector object is not itself
a collection; it is converted into one using a conversion message such as asList, asVector, or
asString.
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Modules: collector

3.6  Pairs

pair
point
rectangle

traits pair describes the general behavior for pairs of arithmetic quantities. A point is a pair
of numbers representing a location on the cartesian plane. A rectangle is a pair of points represent-
ing the opposing corners of a rectangle whose sides are parallel with the x and y axes.

Modules: pair, point, rectangle

3.7  Mirrors

collection
mirror

mirrors smallInt
mirrors float
mirrors vectorish

mirrors vector
mirrors byteVector

mirrors canonicalString
mirrors mirror
mirrors block
mirrors method

mirrors blockMethod
mirrors activation liveOnes

mirrors activation
mirrors deadActivation
mirrors methodActivation
mirrors blockMethodActivation

mirrors process
mirrors assignment
mirrors slots
mirrors profiler

Mirrors allow programs to examine and manipulate objects. (Mirrors get their name from the fact
that a program can use a mirror to examine—that is, reflect upon—itself.) A mirror on an objectx
is obtained by sending the message reflect: x to any object that inherits defaultBehavior.
The object x is called the mirror’s reflectee. A mirror behaves like a keyed collection whose keys
are slot names and whose values are mirrors on the contents of slots of the reflectee. A mirror can
be queried to discover the number and names of the slots in its reflectee, and which slots are parent
slots. A mirror can be used to add and remove slots of its reflectee. Iterating through a mirror enu-
merates objects representing slots of the reflected object (such facets are called “fake” slots). For
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example, a method mirror includes fake slots for the method’s byte code and literal vectors and el-
ements of vectors and byteVectors.

There is one kind of mirror for each kind of object known to the virtual machine: small integers,
floats, canonical strings, object and byte vectors, mirrors, blocks, ordinary and block methods, or-
dinary and block method activations, processes, profilers, the assignment primitive, and ordinary
objects (called “slots” because an ordinary object is just a set of slots). The prototypes for these
mirrors are part of the initial S ELF world that exists before reading in any script files. The file
init.self moves these prototypes to themirrors subcategory of the prototypes category of
the lobby namespace. Because mirrors is not a parent slot, the names of the mirror prototypes
always include the “mirrors” prefix.

Modules: mirror, slot, init

3.8  Messages

SELF allows messages to be manipulated as objects when convenient. For example, if an object
fails to understand a message, the object is notified of the problem via a message whose arguments
include the selector of the message that was not understood. While most objects inherit default
behavior for handling this situation (by halting with an error), it is sometimes convenient for an ob-
ject to handle the situation itself, perhaps by resending the message to some other object. Objects
that do this are called transparent forwarders. An example is given in interceptor.

A string has the basic ability to use itself as a message selector using the messages sendTo: (nor-
mal message sends), resendTo: (resends), or sendTo:DelegatingTo: (delegated sends).
Each of these messages has a number of variations based on the number of arguments the message
has. For example, one would usedsendTo:With:With:  to send a message withat:Put: as the
selector and two arguments:

'at:Put:' sendTo: aDict With: k With: v

(Note: primitives such as _Print cannot be sent in the current system.)

A selector, receiver, delegatee, methodHolder, and arguments can be bundled together in a mes-
sage object. The message gets sent when the message object receives thesend message. Message
objects are used to describe delayed actions, such as the actions that should occur just before or af-
ter a snapshot is read. They are also used as an argument to new process creation (you can create
a new process to execute the message by sending it fork).

Modules: sending, message, selector, interceptor

3.9  Processes and the Prompt

SELF processes are managed by a simple preemptive round-robin scheduler . Processes can be
stepped, suspended, resumed, terminated, or put to sleep for a specified amount of time. Also, the
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stack of a suspended process can be examined and the CPU use of a process can be determined. A
process can be created by sending fork to a message.

The prompt object takes input from stdin and spawns a process to evaluate the message. Input
to the prompt is kept in a history list so that past input can be replayed, similar to the history mech-
anism in manyUnix shells.

Modules: process, scheduler, semaphore, prompt, history

3.10  Foreign Objects

clonable
proxy

fctProxy
foreignFct

foreignCode

The low level aspects of interfacing with code written in other languages (via C or C++ glue code)
are described in the VM Reference Manual. A number of objects in the SELF world are used to in-
terface to foreign data objects and functions. These objects are found in the name spaces traits
foreign, and globals foreign.

One difficulty in interfacing between SELF and external data and functions is that references to for-
eign data and functions from within SELF can become obsolete when the SELF world is saved as
a snapshot and then read in later, possibly on some other workstation. Using an obsolete reference
(i.e., memory address) would be disastrous. Thus, S ELF encapsulates such references within the
special objects proxy (for data references) and fctProxy (for function references). Such objects
are known collectively as proxies. A proxy object bundles some extra information along with the
memory address of the referenced object and uses this extra information to detect (with high prob-
ability) any attempt to use an obsolete proxy. An obsolete proxy is called a dead proxy.

To make it possible to rapidly develop foreign code, the virtual machine supports dynamic linking
of this code. This makes it unnecessary to rebuild the virtual machine each time a small change is
made to the foreign code. Dynamic linking facilities vary from platform to platform, but the SELF
interface to the linking facilities is largely system independent. The SunOS/Solaris dynamic link
interface is defined in thesunLinker object. However, clients should always refer to the dynamic
linking facilities by the name linker, which will be initialized to point to the dynamic linker in-
terface appropriate for the current platform.

The linker, proxy and fctProxy objects are rather low level and have only limited functional-
ity. For example, a fctProxy does not know which code file it is dependent on. The objects
foreignFct and foreignCode establish a higher level and easier to use interface. Aforeign-
Code object represents an “object file” (a file with executable code). It defines methods for loading
and unloading the object file it represents. A foreignFct object represents a foreign routine. It
understands messages for calling the foreign routine and has associated with it a foreignCode
object. The foreignFct and foreignCode objects cooperate with the linker , to ensure that
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object files are transparently loaded when necessary and thatfctProxies depending on an object
file are killed when the object file is unloaded, etc.

The foreignCodeDB object ensures that foreignCode objects are unique, given a path. It also
allows for specifying initializers and finalizers on foreignCode objects. An initializer is a for-
eign routine that is called whenever the object file is loaded. Initializers take no arguments and do
not return values. Typically, they initialize global data structures. Finalizers are called when an ob-
ject file is unloaded. When debugging foreign routines, foreignCodeDB printStatus outputs
a useful overview.

Normal use of a foreign routine simply involves cloning a foreignFct object to represent the
foreign routine. When cloning it, the name of the function and the path of the object file is
specified. It is then not necessary to worry about proxy, fctProxy and linker objects, etc. In
fact, it is recommended not to send messages directly to these objects, since this may break the
higher level invariants that foreignFct objects rely on.

Relevant oddballs:

linker dynamic linker for current platform

sunLinker dynamic linker implementation for SunOS/Solaris

foreignCodeDB registry for foreignCode objects

Modules: foreign

3.11  I/O and Unix

oddball
unix

clonable
proxy

unixFile (mixes in traits unixFile currentOsVariant)

The oddball object unix provides access to selected Unix system calls. The most common calls
are the file operations: creat(), open(), close(), read(), write(), lseek() and un-
link(). tcpConnectToHost:Port:IfFail: opens a TCP connection. The select() call
and the indirect system call are also supported (taking a variable number of integer , float or byte
vector arguments, the latter being passed as C pointers). unixFile provides a higher level inter-
face to the Unix file operations. The oddball objecttty implements terminal control facilities such
as cursor positioning and highlighting.

Relevant oddballs:

stdin, stdout, stderr standard Unix streams

tty console terminal capabilities

Modules: unix, stdin, tty, ttySupport, termcap
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3.12  Other Objects

Here are some interesting oddball objects not discussed elsewhere:

comparator an object that can compute “diffs” between sequences

compilerProfiling compiler profiling

desktop The controlling object for the graphical user interface

history A history of commands typed at the prompt, and their results

memory memory system interface (GC, snapshot, low space, etc.)

monitor system monitor (spy) control

nil indicates an uninitialized value

platforms possible hardware platforms

preferences user configuration preferences

profiling, flatProfiling controls SELF code profiling

prompt interactive read-eval-print loop

scheduler SELF process scheduler

snapshotAction actions to do before/after a snapshot

thisHost describes the current host platform

times reports user, system, cpu, or real time

typeSizes bit/byte sizes for primitive types

vmProfiling virtual machine profiling
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3.13  How to build the world

Should you need to reconstruct a world from the source files, here’s how to do it. This section de-
scribes how to create a default object world by reading in the SELF source code provided with your
distribution (in Optional.SelfSource.tar.Z). You can also do this after writing the world
out using the transporter (transporter fileOut fileOutAll).

To create the default object world:

1. Start the SELF VM:

% Self
Self Virtual Machine Version 4.0.2, Thu 09 Feb 95 19:41:30
Copyright 1989-95: The Self Group (type _Credits for credits)

VM#

2. (Optional, but recommended.) Start the spy so you can watch the world fill up with objects:

VM# _Spy: true

Note that because the world is empty, you must use the primitive to do this.

3. Read in the default world. To do this, ask SELF to read expressions from a file:

VM# 'release4_0.self' _RunScript

Various configurations are possible: release4_0 is the released system; smallUI2 is the
same but without the various example applications; all contains the old (release 3.0) experi-
mental user interface; all2 contains both user interfaces, and the test suite.

Unless you have asked SELF not to print script names, you should see something like:

reading release4_0.self
reading init.self
. . .

4. After all the files have been read in, SELF will start the process scheduler, initialize its module
cache, and print:

“Self 0”

That last line is the SELF prompt indicating that the system is ready to read and evaluate ex-
pressions.
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3.14  How to use the low-level interrupt facilities

There are two low-level ways to interrupt a running SELF program†, Control-C and Control-\. The
second way works even if the SELF process scheduler is not running.

In response to the interrupt, you will see one of two things. If the S ELF scheduler is not running,
you will be returned directly to the VM# prompt. If the scheduler is running, you will be presented
with a list of SELF processes (the process menu):

Self 9> 100000 * 100000 do: []
^C
  ----------------Interrupt-----------------
  Ready:
    <25> scheduling process 100000 * 100000 do: []

------------------------------------------
  Select a process (or q to quit scheduler): 25
  Select <return> for no action
         p to print the stack
         k to kill the process
         b to resume execution of the process in the background
         s to suspend execution of the process
 for process 25: k
 Process 25 killed.
  ------------------------------------------
Self 10>

In this example, the loop was interrupted by typing Control-C, and the process menu was used to
abort the process. If the user had typed “q” to quit the scheduler, all current processes would have
been aborted along with the scheduler itself:

 ...
 ------------------------------------------
 Select a process (or q to quit scheduler): q
 Scheduler shut down.
 ------------------------------------------
prompt
VM#

The scheduler has been stopped, returning the user to the VM# prompt. The command prompt
start restarts the scheduler:

VM# prompt start
Self 11>

Although the VM# prompt can be used to evaluate expressions directly , the scheduler supports
much nicer error messages and debugging, so it is usually best to run the scheduler. (The scheduler
is started automatically when the default world is created.)

Certain virtual machine operations like garbage collection, reading a snapshot, and compilation
cannot be interrupted; interrupts during these operations will be deferred until the operation is

† Normally, you would use debugging facilities provided in the programming environment.
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complete. As a last resort (e.g., if the system appears to be “hung”), you can force an abort by
pressing Control-\ five times in a row.

3.15  Using the textual debugger

If you are modifying the core of the programming environment or working without the environ-
ment you may need to use the textual debugger. After attaching the aborted process to the debugger
using the shell command attach, these commands are available:

a. A bytecode is trivial if it is a push of a literal or a send to a slot residing in
the lexical scope of the current activation.

Command Description

attach: n attach the process with object reference number n

detach detach the debugged process

step[:n] execute (n) non trivial bytecodesa

stepi[:n] execute (n) bytecodes

next[:n] execute (n) non trivial bytecodes in the current activation

nexti[:n] execute (n) bytecodes in the current activation

finish finish executing the current activation

cont continue execution

trace print out a stack trace of the process

show display the current activation

show: n go to and display the nth activation on the stack

status display the status of the debugged process

up[: n] go up (n) activation(s)

upLex go up to the lexical enclosing scope of this activation

down[: n] go down (n) activation(s)

lookup: <name> lookup the given name in the context of the current activation
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Appendix 3.A Glossary of Useful Selectors

This glossary lists some useful selectors. It is by no means exhaustive.

Copying

clone shallow copy (for use within an object; clients should use copy)
copy copy the receiver, possibly with embedded copies or initialization

Comparing

Equality

= equal
!= not equal
hash hash value
== identical (the same object; this is reflective and should be avoided)
!== not identical

Ordered

< less than
> greater than
<= less than or equal
>= greater than or equal
compare:IfLess:Equal:Greater: three way comparison
compare:IfLess:Equal:Greater:Incomparable: three way comparison with failure

Numeric operations

+ add
- subtract
* multiply
/ divide
/= divide exactly (returns float)
/~ divide and round to integer (tends to round up)
/+ divide and round up to integer
/- divide and round down to integer
% modulus
absoluteValue absolute value
inverse multiplicative inverse
negate additive inverse
ceil round towards positive infinity
floor round towards negative infinity
truncate truncate towards zero
round round
asFloat coerce to float
asInteger coerce to integer
double multiply by two
quadruple multiply by four
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half divide by two
quarter divide by four
min: minimum of receiver and argument
max: maximum of receiver and argument
mean: mean of receiver and argument
pred predecessor
predecessor predecessor
succ successor
successor successor
power: raise receiver to integer power
log: logarithm of argument base receiver, rounded down to integer
square square
squareRoot square root
factorial factorial
fibonacci fibonacci
sign signum (-1, 0, 1)
even true if receiver is even
odd true if receiver is odd

Bitwise operations (integers)

&& and
|| or
^^ xor
complement bitwise complement
<< logical left shift
>> logical right shift
<+ arithmetic left shift
+> arithmetic right shift

Logical operations (booleans)

&& and
|| or
^^ xor
not logical complement

Constructing

@ point construction (receiver and argument are integers)
# rectangle construction (receiver and argument are points)
## rectangle construction (receiver is a point, argument is an extent)
& collection construction (result can be converted into collection)
, concatenation

Printing

print print object on stdout
printLine print object on stdout with trailing newline
printString return a string label
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printStringDepth: return a string label with depth limitation request
printStringSize: return a string label with number of characters limitation request
printStringSize:Depth: return a string label with depth and size limitation request

Control

Block evaluation

value[:{With:}] evaluate a block, passing arguments

Selection

ifTrue: evaluate argument if receiver is true
ifFalse: evaluate argument if receiver is false
ifTrue:False: evaluate first arg if true, second arg if false
ifFalse:True: evaluate first arg if false, second arg if true

Local exiting

exit exit block and return nil if block’s argument is evaluated
exitValue exit block and return a value if block’s argument is evaluated

Basic looping

loop repeat the block forever
loopExit repeat the block until argument is evaluated; then exit and return nil
loopExitValue repeat the block until argument is evaluated; then exit and return a value

Pre-test looping

whileTrue repeat the receiver until it evaluates to true
whileFalse repeat the receiver until it evaluates to false
whileTrue: repeat the receiver and argument until receiver evaluates to true
whileFalse: repeat the receiver and argument until receiver evaluates to false

Post-test looping

untilTrue: repeat the receiver and argument until argument evaluates to true
untilFalse: repeat the receiver and argument until argument evaluates to false

Iterators

do: iterate, passing each element to the argument block
to:By:Do: iterate, with stepping
to:Do: iterate forward
upTo:By:Do: iterate forward, without last element, with stepping
upTo:Do: iterate forward, without last element
downTo:By:Do: reverse iterate, with stepping
downTo:Do: reverse iterate
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Collections

Sizing

isEmpty test if collection is empty
size return number of elements in collection

Adding

add: add argument element to collection receiver
addAll: add all elements of argument to receiver
at:Put: add key-value pair
at:Put:IfAbsent: add key-value pair, evaluating block if key is absent
addFirst: add element to head of list
addLast: add element to tail of list
copyAddAll: return a copy containing the elements of both receiver and argument
copyContaining: return a copy containing only the elements of the argument

Removing

remove: remove the given element
remove:IfAbsent: remove the given element, evaluating block if absent
removeAll remove all elements
removeFirst remove first element from list
removeLast remove last element from list
removeAllOccurences: remove all occurrences of this element from list
removeKey: remove element at the given key
removeKey:IfAbsent: remove element at the given key, evaluating block if absent
copyRemoveAll return an empty copy

Accessing

first return the first element
last return the last element
includes: test if element is member of the collection
occurrencesOf: return number of occurences of element in collection
findFirst:IfPresent:IfAbsent: evaluate present block on first element found satisfying criteria,

absent block if no such element
at: return element at the given key
at:IfAbsent: return element at the given key, evaluating block if absent
includesKey: test if collection contains a given key

Iterating

do: iterate, passing each element to argument block
doFirst:Middle:Last:IfEmpty: iterate, with special behavior for first and last
doFirst:MiddleLast:IfEmpty: iterate, with special behavior for first
doFirstLast:Middle:IfEmpty: iterate, with special behavior for ends
doFirstMiddle:Last:IfEmpty: iterate, with special behavior for last
reverseDo: iterate backwards through list
with:Do: co-iterate, passing corresponding elements to block
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Reducing

max return maximum element
mean return mean of elements
min return minimum element
sum return sum of elements
product return product of elements
reduceWith: evaluate reduction block with elements
reduceWith:IfEmpty: evaluate reduction block with elements, evaluating block if empty

Transforming

asByteVector return a byte vector with same elements
asString return a string with same elements
asVector return a vector with same elements
asList return a list with the same elements
filterBy:Into: add elements that satisfy filter block to a collection
mapBy: add result of evaluating map block with each element to this collection
mapBy:Into: add result of evaluating map block with each element to a collection

Sorting

sort sort receiver in place
copySorted copy sorted in ascending order
copyReverseSorted copy sorted in descending order
copySortedBy: copy sorted by custom sort criteria
sortedDo: iterate in ascending order
reverseSortedDo: iterate in descending order
sortedBy:Do: iterate in order of custom sort criteria

Indexable-specific

firstKey return the first key
lastKey return the last key
loopFrom:Do: circularly iterate, starting from element n
copyAddFirst: return a copy of this collection with element added to beginning
copyAddLast: return a copy of this collection with element added to end
copyFrom: return a copy of this collection from element n
copyFrom:UpTo: return a copy of this collection from element n up to element m
copyWithoutLast return a copy of this collection without the last element
copySize: copy with size n
copySize:FillingWith: copy with size n, filling in any extra elements with second arg

Timing

realTime elapsed real time to execute a block
cpuTime CPU time to execute a block
userTime CPU time in user process to execute a block
systemTime CPU time in system kernel to execute a block
totalTime system + user time to execute a block
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Message Sending

Sending (like Smalltalk perform; receiver is a string)

sendTo:{With:} send receiver string as a message
sendTo:WithArguments: indirect send with arguments in a vector
sendTo:DelegatingTo:{With:} indirect delegated send
sendTo:DelegatingTo:WithArguments: indirect delegated send with arg vector
resendTo:{With:} indirect resend
resendTo:WithArguments: indirect resend with arguments in a vector

Message object protocol

send perform the send described by a message object
fork start a new process; the new process performs the message
receiver: set receiver
selector: set selector
methodHolder: set method holder
delegatee: set delegatee of the message object
arguments: set arguments (packaged in a vector)
receiver:Selector: set receiver and selector
receiver:Selector:Arguments: set receiver, selector, and arguments
receiver:Selector:Type:Delegatee:MethodHolder:Arguments:

set all components

Reflection (mirrors)

reflect: returns a mirror on the argument
reflectee returns the object the mirror receiver reflects
contentsAt: returns a mirror on the contents of slot n
isAssignableAt: tests if slot n is an assignable slot
isParentAt: tests if slot n is a parent slot
isArgumentAt: tests if slot n is an argument slot
parentPriorityAt: returns the parent priority of slot n
slotAt: returns a slot object representing slot n
contentsAt: returns the contents of the slot named n
visibilityAt: returns a visibility object representing visibility of slot n

System-wide Enumerations (messages sent to the oddball object browse)

all[Limit:] returns a vector of mirrors on all objects in the system (up to the limit)
referencesOf:[Limit:] returns a vector of mirrors on all objects referring to arg (up to the limit)
referencesOfReflectee:[Limit:]

returns a vector of mirrors on all objects referring to ar gument’s
reflectee (up to the limit); allows one to find references to a method

childrenOf:[Limit:] returns a vector of mirrors on all objects with a parent slot referring to
the given object (up to the limit)

implementorsOf:[Limit:] returns a vector of mirrors on objects with slots whose names match the
given selector (up to the limit)
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sendersOf:[Limit:] returns a vector of mirrors on methods whose selectors match the given
selector (up to the limit)

Debugging

halt halt the current process
halt: halt and print a message string
error: halt, print an error message, and display the stack
warning: beep, print a warning message, and continue

Virtual Machine-Generated

Errors

undefinedSelector:Type:Delegatee:MethodHolder:Arguments:
lookup found no matching slot

ambiguousSelector:Type:Delegatee:MethodHolder:Arguments:
lookup found more than one matching slot

missingParentSelector:Type:Delegatee:MethodHolder:Arguments:
parent slot through which resend was delegated was not found

performTypeErrorSelector:Type:Delegatee:MethodHolder:Arguments:
first argument to the _Perform primitive was not a canonical string

mismatchedArgumentCountSelector:Type:Delegatee:MethodHolder:Arguments:
number of args supplied to _Perform primitive does not match selector

primitiveFailedError:Name:
the named primitive failed with given error string

Other system-triggered messages

postRead slot to evaluate after reading a snapshot
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This section discusses some programming idioms and stylistic conventions that have evolved in
the SELF group. Rather than simply presenting a set of rules, an attempt has been made to explain
the reasons for each stylistic convention. While these conventions have proven useful to the SELF
group, they should be taken as guidelines, not commandments. SELF is still a young language, and
it is likely that its users will continue to discover new and better ways to use it effectively.

4.1  Behaviorism versus Reflection

One of the central principles of SELF is that an object is completely defined by its behavior: that
is, how it responds to messages. This idea, which is sometimes calledbehaviorism, allows one ob-
ject to be substituted for another without ill effect—provided, of course, that the new object’s be-
havior is similar enough to the old object’s behavior. For example, a program that plots points in a
plane should not care whether the points being plotted are represented internally in cartesian or po-
lar coordinates as long as their external behavior is the same. Another example arises in program
animation. One way to animate a sorting algorithm is to replace the collection being sorted with an
object that behaves like the original collection but, as a side effect, updates a picture of itself on the
screen each time two elements are swapped. behaviorism makes it easier to extend and reuse pro-
grams, perhaps even in ways that were not anticipated by the program’s author.

It is possible, however, to write non-behavioral programs in SELF. For example, a program that ex-
amines and manipulates the slots of an object directly, rather than via messages, is not behavioral
since it is sensitive to the internal representation of the object. Such programs are called reflective,
because they are reflecting on the objects and using them as data, rather than using the objects to
represent something else in the world. Reflection is used to talk about an object rather that talking
to it. In SELF, this is done with objects called mirrors. There are times when reflection is unavoid-
able. For example, the SELF programming environment is reflective, since its purpose is to let the
programmer examine the structure of objects, an inherently reflective activity. Whenever possible,,
however, reflective techniques should be avoided as a matter of style, since a reflective program
may fail if the internal structure of its objects changes. This places constraints on the situations in
which the reflective program can be reused, limiting opportunities for reuse and making program
evolution more difficult. Furthermore, reflective programs are not as amenable to automatic anal-
ysis tools such as application extractors or type inferencers.

Programs that depend on object identity are also reflective, although this may not be entirely obvi-
ous. For example, a program that tests to see if an object is identical to the object true may not
behave as expected if the system is later extended to include fuzzy logic objects. Thus, like reflec-
tion, it is best to avoid using object identity. One exception to this guideline is worth mentioning.
When testing to see if two collections are equal, observing that the collections are actually the
same object can save a tedious element-by-element comparison. This trick is used in several places
in the SELF world. Note, however, that object identity is used only as a hint; the correct result will
still be computed, albeit more slowly, if the collections are equal but not identical.

Sometimes the implementation of a program requires reflection. Suppose one wanted to write a
program to count the number of unique objects in an arbitrary collection. The collection could, in
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general, contain objects of different, possibly incomparable, types. In Smalltalk, one would use an
IdentitySet to ensure that each object was counted exactly once. IdentitySets are reflective, since
they use identity comparisons. In SELF, the preferred way to solve this problem is to make the re-
flection explicit by using mirrors. Rather than adding objects to an IdentitySet, mirrors on the ob-
jects would be added to an ordinary set. This substitution works because two mirrors are equal if
and only if their reflectees are identical.

In short, to maximize the opportunities for code reuse, the programmer should:

• avoid reflection when possible,

• avoid depending on object identity except as a hint, and

• use mirrors to make reflection explicit when it is necessary.

4.2  Objects Have Many Roles

Objects in SELF have many roles. Primarily, of course, they are the elements of data and behavior
in programs. But objects are also used to factor out shared behavior, to represent unique objects, to
organize objects and behavior, and to implement elegant control structures. Each of these uses are
described below.

4.2.1  Shared Behavior
Sometimes a set of objects should have the same behavior for a set of messages. The slots defining
this shared behavior could be replicated in each object but this makes it difficult to ensure the ob-
jects continue to share the behavior as the program evolves, since the programmer must remember
to apply the same changes to all the objects sharing the behavior. Factoring out the shared behavior
into a separate object allows the programmer to change the behavior of the entire set of objects sim-
ply by changing the one object that implements the shared behavior . The objects that share the
behavior inherit it via parent slots containing (references to) the shared behavior object.

By convention, two kinds of objects are used to hold shared behavior: traits and mixins. A traits
object typically has a chain of ancestors rooted in the lobby. A mixin object typically has no par-
ents, and is meant to be used as an additional parent for some object that already inherits from the
lobby.

4.2.2  One-of-a-kind Objects (Oddballs)

Some objects, such as the object true, are unique; it is only necessary to have one of them in the
system. (It may even be important that the system containexactly one of some kind of object.) Ob-
jects playing the role of unique objects are called oddballs. Because there is no need to share the
behavior of an oddball among many instances, there is no need for an oddball to have separate
traits and prototype objects. Many oddballs inherit a copy method from traits oddball that
returns the object itself rather than a new copy, and most oddballs inherit the global namespace and
default behavior from the lobby.
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4.2.3  Inline Objects

An inline object is an object that is nested in the code of a method object. The inline object is usu-
ally intended for localized use within a program. For example, in a finite state machine implemen-
tation, the state of the machine might be encoded in a selector that would be sent to an inline object
to select the behavior for the next state transition:

state sendTo: (|
inComment: c = ( c = '"' ifTrue: [state: 'inCode']. self ).
inCode: c = ( c = '"' ifTrue: [state: 'inComment']

 False: ... )
|)
With: nextChar

In this case, the inline object is playing the role of a case statement.

Another use of inline objects is to return multiple values from a method, as discussed in section
4.4. Yet another use of inline objects is to parameterize the behavior of some other object. For ex-
ample, the predicate used to order objects in a priorityQueue can be specified using an inline
object:

queue: priorityQueue copyRemoveAll.
queue sorter: (| element: e1 Precedes: e2 = ( e1 > e2 ) |).

(A block cannot be used here because the current implementation of S ELF does not support non-
LIFO blocks, and the sorter object may outlive the method that creates it). There are undoubtedly
other uses of inline objects. Inline objects do not generally inherit from the lobby.

4.3  Naming and Printing

When debugging or exploring in the SELF world, one often wants to answer the question: “what is
that object?” The SELF environment provides two ways to answer that question. First, many ob-
jects respond to the printString message with a textual description of themselves. This string
is called the object’s printString. An object’s printString can be quite detailed; standard protocol
allows the desired amount of detail to be specified by the requestor . For example, the printString
for a collection might include the printStrings of all elements or just the first few . Not all objects
have printStrings, only those that satisfy the criteria discussed in section 4.3.2 below.

The second way to describe an object is to give its path name. A path name is a sequence of unary
selectors that describes a path from the lobby to the object. For example, the full path name of the
prototype list is “globals list.” A path name is also an expression that can be evaluated (in the con-
text of the lobby) to produce the object. Because “globals” is a parent slots, it can be omitted from
this path name expression. Doing this yields the short path name “list.” Not all objects have path
names, only those that can be reached from the lobby. Such objects are called well-known.

4.3.1  How objects are printed

When an expression is typed at the prompt, it is evaluated to produce a result object. The prompt
then creates a mirror on this result object and asks the mirror to produce a name for the object. (A
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mirror is used because naming is reflective.) The object’s creator path annotation provides a hint
about the path from the lobby to either the object itself or its prototype. If the object is a clone “a”
or “an” is prepended to its prototype’s creator path. In addition to its path, the mirror also tries to
compute a printString for the object if it is annotated asisComplete. Then, the two pieces of
information are merged. For example, the name of the prototype list is “list” but the name oflist
copy add: 17 is “a list(17).” See the naming category in mirror traits for the details of this pro-
cess.

4.3.2  How to make an object print

The distinction between objects that hold shared behavior (traits and mixin objects) and concrete
objects (prototypes, copies of prototypes, and oddballs) is purely a matter of convention; the SELF
language makes no such distinction. While this property (not having special kinds of objects) gives
SELF great flexibility and expressive power, it leads to an interesting problem: the inability to dis-
tinguish behavior that is ready for immediate use from that which is defined only for the benefit of
descendant objects. Put another way: S ELF cannot distinguish those objects playing the role of
classes from those playing the role of instances.

The most prominent manifestation of this problem crops up in object printing. Suppose one wishes
to provide the following printString method for all point objects:

printString = ( x printString, ’@’, y printString )

Like other behavior that applies to all points, the method should be put in point traits. But what
happens if printString is sent to the object traits point? The printString method is
found but it fails when it attempts to send x and y to itself because these slots are only defined in
point objects (not the traits point object). Of course there are many other messages defined in
traits point that would also fail if they were sent to traits point rather than to a point
object. The reason printing is a bigger problem is that it is useful to have a general object printing
facility to be used during debugging and system exploration. To be as robust as possible, this print-
ing facility should not send printString when it will fail. Unfortunately , it is dif ficult to tell
when printString is likely to fail. Using reflection, the facility can avoid sending
printString to objects that do not define printString. But that is not the case with traits
point. The solution taken in this version of the system is to mark printable objects with a special
annotation. The printing facility sends printString to the object only if the object contains an
annotation IsComplete.

The existence of an isComplete annotation in an object means that the object is prepared to print
itself. The object agrees to provide behavior for a variety of messages; see the programming envi-
ronment manual for more details.

4.4  How to Return Multiple Values

Sometimes it is natural to think of a method as returning several values, even though S ELF only
allows a method to return a single object. There are two ways to simulate methods that return
multiple values. The first way is to use an inlined object. For example, the object:

(| p* = lobby. lines. words. characters |)
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could be used to package the results of a text processing method into a single result object:

count = (
| r = (| p* = lobby. lines. words. characters |) ... |
...
r: r copy.
r lines: lCount. r words: wCount. r characters: cCount.
r )

Note that the inline object prototype inherits copy from the lobby. If one omitted its parent slot p, one would have
to send it the _Clone primitive to copy it. It is considered bad style, however, to send a primitive directly, rather than
calling the primitive’s wrapper method.

The sender can extract the various return values from the result object by name.

The second way is to pass in one block for each value to be returned. For example:

countLines:[| :n | lines: n ]
Words:[| :n | words: n ]
Characters:[| :n | characters: n ]

Each block simply stores its ar gument into the a local variable for later use. The
countLines:Words:Characters: method would evaluate each block with the appropriate
value to be returned:

countLines: lb Words: wb Characters: cb = (
...
lb value: lineCount.
wb value: wordCount.
cb value: charCount.
...

4.5  Substituting Values for Blocks

The lobby includes behavior for the block evaluation messages. Thus, any object that inherits from
the lobby can be passed as a parameter to a method that expects a block—the object behaves like
a block that evaluates that object. For example, one may write:

x >= 0 ifTrue: x False: x negate

rather than:

x >= 0 ifTrue: [ x ] False: [ x negate ]

Note, however, that SELF evaluates all arguments before sending a message. Thus, in the first case
“x negate” will be evaluated regardless of the value of x, even though that argument will not be
used if x is nonnegative. In this case, it doesn’t matter, but if “x negate” had side effects, or if it
were very expensive, it would be better to use the second form.

In a similar vein, blocks inherit default behavior that allows one to provide a block taking fewer
arguments than expected. For example, the collection iteration message do: expects a block tak-
ing two arguments: a collection element and the key at which that element is stored. If one is only
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interested in the elements, not the keys, one can provide a block taking only one argument and the
second block argument will simply be ignored. That is, you can write:

myCollection do: [| :el | el printLine]

instead of:

myCollection do: [| :el. :key | el printLine]

4.6 nil Considered Naughty

As in Lisp, SELF has an object called nil, which denotes an undefined value. The virtual machine
initializes any uninitialized slots to this value. In Lisp, many programs test for nil to find the end
of a list, or an empty slot in a hash table, or any other undefined value. There is a better way in
SELF. Instead of testing an object’s identity against nil, define a new object with the appropriate
behavior and simply send messages to this object; SELF’s dynamic binding will do the rest. For ex-
ample, in a graphical user interface, the following object might be used instead of nil:

nullGlyph = (|
display = ( self ).
boundingBox = (0@0) # (0@0).
mouseSensitive = false.

|)

To make it easier to avoid nil, the methods that create new vectors allow you to supply an alterna-
tive to nil as the initial value for the new vector’s elements (e.g., copySize:FillingWith:).

4.7  Hash and =

Sets and dictionaries are implemented using hash tables. In order for an object to be eligible for in-
clusion in a set or used as a key in a dictionary, it must implement both = and hash. (hash maps
an object to asmallInt.) Further, hash must be implemented in such a way that for objectsa and
b, (a = b ) implies (a hash = b hash ). The behavior that sets disallow duplicates and
dictionaries disallow multiple entries with the same key is dependent upon the correct implemen-
tation of hash for their elements and keys. Finally , the implementation of sets (and dictionaries)
will only work if the hash value of the objects in the set do not change while the objects are in the
set (dictionary). This may complicate managing sets of mutable objects, since if the hash value
depends on the mutable state, the objects can not be allowed to mutate while in the set.

Of course, a trivial hash function would simply return a constant regardless of the contents of the
object. However, for good hash table performance, the hash function should map different objects
to different values, ideally distributing possible object values as uniformly as possible across the
range of small integers.
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4.8  Equality, Identity, and Indistinguishability

Equality, identity, and indistinguishability are three related concepts that are often confused. Two
objects are equal if they “mean the same thing”. For example, 3 = 3.0 even though they are dif-
ferent objects and have different representations. Two objects are identical if and only if they are
the same object. (Or, more precisely, two references are identical if they refer to the same object.)
The primitive _Eq: tests if two objects are identical. Finally, two objects are indistinguishable if
they have exactly the same behavior for every possible sequence of non-reflective messages. The
binary operator “==” tests for indistinguishability. Identity implies indistinguishability which im-
plies equality.

It is actually not possible to guarantee that two different objects are indistinguishable, since reflec-
tion could be used to modify one of the objects to behave dif ferently after the indistinguisability
test was made. Thus, == is defined to mean identity by default. Mirrors, however, override this de-
fault behavior; (m1 == m2 ) if (m1 reflectee _Eq: m2 reflectee ). This makes it appear
that there is at most one mirror object for each object in the system. This illusion would break
down, however, if one added mutable state to mirror objects.
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5.1  Startup options

The following command-line options are recognised by the Virtual Machine:

-f filename Reads filename (which should contain SELF source) immediately after star-
tup (after reading the snapshot) and evaluates the contents. Useful for set-
ting options, installing personal shortcuts, etc.

-h Prints a message describing the options

-p Suppresses execution of the expression snapshotAction postRead af-
ter reading a snapshot. Useful if something in the startup sequence causes
the system to break.

-s snapshot Reads initial world from snapshot. A snapshot begins with the line
exec Self -s $0 $@

which causes the Virtual Machine to begin execution with the snapshot.

-w Don’t print warnings about object code

These options are provided for use by SELF VM implementors:

-F Discards any machine code saved in the snapshot. If the code in a snapshot
is for some reason corrupted, but the objects are not, this option can be used
to recover the snapshot.

-l logfile Writes a log of events generated by the spy to logfile.

-r Disables real timer interrupts

-t Disables all timers

Other command-line options are ignored by the Virtual Machine but are available at SELF level via
the primitive _CommandLine.

5.2  System-triggered messages

Certain events cause the system to automatically send a message to the lobby. After reading a snap-
shot the expression snapshotAction postRead is evaluated. This allows the S ELF world to
reinitialize itself—for example, to reopen windows.
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There are other situations in which the system sends messages; see section 5.3.

5.3  Run-time message lookup errors

If an error occurs during a message send, the system sends a message to the receiver of the mes-
sage. Any object can handle these errors by defining (or inheriting) a slot with the corresponding
selector. All messages sent by the system in response to a message lookup error have the same ar-
guments. The first argument is the offending message’s selector; the additional arguments specify
the message send type (one of ’normal’, ’implicitSelf’, ’undirectedResend’, ’di-
rectedResend’, or ’delegated’), the directed resend parent name or the delegatee ( 0 if not
applicable), the sending method holder, and a vector containing the arguments to the message, if
any.

• undefinedSelector:Type:Delegatee:MethodHolder:Arguments:
The receiver does not understand the message: no slot matching the selector can be found in
the receiver or its ancestors.

• ambiguousSelector:Type:Delegatee:MethodHolder:Arguments:
There is more than one slot matching the selector.

• missingParentSelector:Type:Delegatee:MethodHolder:Arguments:
The parent slot through which the resend should have been directed was not found in the send-
ing method holder.

• mismatchedArgumentCountSelector:Type:Delegatee:MethodHolder:Arguments:
The number of arguments supplied to the _Perform primitive does not match the number of
arguments required by the selector.

• performTypeErrorSelector:Type:Delegatee:MethodHolder:Arguments:
The first argument to the _Perform primitive (the selector) wasn’t a canonical string.

These error messages are just like any other message. Therefore, it is possible that the object P
causing the error (which is being sent the appropriate error message) does not understand the error
message M either. If this happens, the system sends the first message (undefinedSelector..) to
the current process, with the error message M as argument. If this is not understood, then the sys-
tem suspends the process. If the scheduler is running, it is notified of the failure.

The system will also suspend a process if it runs out of stack space (too much recursion) or if a
block is evaluated whose lexically-enclosing scope has already returned. Since these errors are
nonrecoverable they cannot be caught by the same SELF process; the scheduler, if running, is no-
tified.

5.4  Low-level error messages

Five kinds of errors can occur during the execution of a S ELF program: lookup errors, primitive
errors, programmer defined errors, non-recoverable errors, and fatal VM errors. All but the last of
these are usually caught and handled by mechanisms in the programming environment, resulting
in a debugger being presented to the user. However, if programs are run without the programming
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environment, or the error-handling mechanisms themselves are broken, low-level error facilities
are used.

This section describes the various error messages presented by the low-level facilities. For each
category or error, the general layout of error messages in that category will be explained along with
the format of the stack trace. Then a “rogue’s gallery” of the errors in that category will be shown.

By default, errors are handled by a set of methods defined in moduleerrorHandling. For all er-
rors except nonrecoverable and fatal VM errors, an object can handle errors in its own way by de-
fining its own error handling methods. If the object in which an error occurs neither inherits nor
defines error handling behavior, the VM prints out a low-level error message and a stack trace. The
system will also resort to this low-level message and trace if an error is encountered while trying
to handle an error.

5.5  An example

Here is an expression that produces an error in the current system:

“Self 7” 100000 factorial

The stack has grown too big.
(Self limits stack sizes, and cannot resume processes with stack overflows.)
To debug type “attach” or to show stack type “zombies first printError”.

The error arose because the recursive method factorial exceeded the size allocated for the process
stack which resulted in a stack overflow.

The virtual machine currently allocates a fixed-size stack to each process and does not extend the stack on demand.

5.6  Lookup errors

Lookup errors occur when an object does not understand a message that is sent to it. How the ac-
tual message lookup is done is described in the Language Reference Manual.

• No ’foo’ slot found in shell <0>.
The lookup found no slot matching the selector foo.

• More than one ’system’ slot was found in shell <0>.
The matching slots are: oddballs <6> and prototypes <7>.

The lookup found two matching system slots which means the message is ambig-
uous. The error message also says where the matching slots were found.
Ambiguities can often be resolved by changing parent priorities.

• No ’fish’ delegatee slot was found in <a child of lobby> <12>.
The lookup found no parent slot fish, which was explicitly specified as the dele-
gatee of the message.

5.7  Programmer defined errors

These are explicitly raised in the SELF program to report errors, e.g. sending the message first
to an empty list will cause such an error.
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• Error: first is absent.
Receiver is: list <7>.

Use the selectors error: and error:Arguments: to raise a programmer defined error.

5.8  Primitive errors

Primitive failures occur when a primitive cannot perform the requested operation, for example, be-
cause of a missing or invalid argument.

• badTypeError: the ’_IntAdd:’ primitive failed.
Its receiver was shell <6>.

The primitive failed with badTypeError because the shell in not an integer.

• The selector 12 could not be sent to shell because it is not a string.
The primitive _Perform expects a string as its first argument.

• The selector ’add:’ could not be sent to shell <0> because it does not
take 2 arguments.

The primitive _Perform received the wrong number of arguments.

There are many other kinds of possible primitive errors.

5.9  Nonrecoverable process errors

Errors that stop a process from continuing execution are referred to as nonrecoverable errors.

• The stack has grown too big.
(Self 4.0 limits stack sizes, and cannot resume processes with stack
overflows.)

A stack overflow error occurs because the current version of S ELF allocates a
fixed size stack for each process, and the stack cannot be expanded.

• Self 4.0 cannot run a block after its enclosing method has returned.
(Self cannot resume this process, either.)

This error occurs if a block is executed after its lexically enclosing method has re-
turned. This is call a “non-LIFO” block. Non-LIFO blocks are not supported by
the current version of SELF.

5.10  Fatal errors

In rare cases, the virtual machine may encounter a fatal error (e.g., a resource limit is exceeded or
an internal error is discovered). When this happens, a short menu is displayed:
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VM Version: 4.0.5, Tue 27 Jun 95 13:35:49 Solaris 2.x (svr4)

Internal error: signal 11 code 3 addr 4 pc 0x1ac768.

Do you want to:
 1) Quit Self (optionally attempting to write a snapshot)
 2) Try to print the Self stack
 3) Try to return to the Self prompt
 4) Force a core dump
Your choice:

The first two lines help the S ELF implementors locate the problem. Printing the SELF stack may
provide more information about the problem but does not always work. Returning to the S ELF
prompt may be successful, but the system integrity may have been compromised as a result of the
error. The safest course is to attempt to write a snapshot (if there are unsaved changes), and then
check the integrity of the snapshot by executing the primitive_Verify after starting it. If there are
any error messages from the primitive, do not attempt to continue using the snapshot.

Since fatal errors usually arise from a bug in the virtual machine, please send the SELF group a bug
report, and include a copy of the error message if possible. If the error is reproducible please de-
scribe how to reproduce it (including a snapshot or source files may be helpful).

5.11  The initial SELF world

The diagram on the following pages shows all objects in the “bare” SELF world. In addition, liter-
als like integers, floats, and strings are conceptually part of the initial SELF world; block and object
literals are created by the programmer as needed. All the objects in the system are created by add-
ing slots to these objects or by cloning them. Table 1 lists all the initial objects and provides a short
description for each. Reading in the world rearranges the structure of the “bare” SELF world (see
The SELF World)
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Table 1   Objects in the initial SELF world

Object Description

lobby The center of the SELF object hierarchy, and the context in which expressions typed in at the
VM prompt, read in via _RunScript, or used as the initializers of slots, are evaluated.

Objects in the lobby

shell After reading in the world, shell is the context in which expressions typed in at the prompt
are evaluated.

snapshotAction An object with slot for the startup action (see section 5.2), postRead. This slot initially
contains nil.

systemObjects This object contains slots containing the general system objects, including nil, true,
false, and the prototypical vectors and mirrors.

Objects in systemObjects

nil The initializer for slots that are not explicitly initialized. Indicates “not a useful object.”

true Boolean true. Argument to and returned by some primitives.

false Boolean false. Argument to and returned by some primitives.

vector The prototype for (normal) vectors.

byteVector The prototype for byte vectors.

proxy The prototype for proxy objects.

fctProxy The prototype for fctProxy objects.

vector parent The object that vector inherits from. Since all object vectors will inherit from this object
(because they are cloned from vector), this object will be the repository for shared behav-
ior (a traits object) for vectors.

byteVector parent Similar to vector parent: the byteVector traits object.

slotAnnotation The default slot annotation object.

objectAnnotation The default object annotation object

Figure 4 The initial SELF world (part 2)
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profiler The prototype for profilers.

mirrors See below.

Literals and their parents

integers Integers have one slot, a parent slot called parent. All integers have the same parent: see 0
parent, below.

0 parent All integers share this parent, the integer traits object.

floats Floats have one slot, a parent slot called parent. All floats have the same parent: see 0.0
parent, below.

0.0 parent All floats share this parent, the float traits object.

canonical strings In addition to a byte vector part, a canonical string has one slot, parent, a parent slot con-
taining the same object for all canonical strings (see ’’ parent below).

’’ parent All canonical strings share this parent, the string traits object.

blocks Blocks have two slots: parent, a parent slot containing the same object for all blocks (see
[] parent, below), and value (or value:, or value:With:, etc., depending on the
number of arguments the block takes) which contains the block’s deferred method.

[ ] parent All blocks share this parent, the block traits object.

Prototypical mirrors

All of the prototypical mirrors consist of one slot, a parent slot named parent. Each of
these parent slots points to an empty object (denoted in Figure 3 by “( )”).

smiMirror Prototypical mirror on a small integer; the reflectee is 0.

floatMirror Prototypical mirror on a float; the reflectee is 0.0.

stringMirror Prototypical mirror on a canonical string; the reflectee is the empty canonical string (’’).

processMirror Prototypical mirror on a process; the reflectee is the initial process.

byteVectorMirror Prototypical mirror on a byte vector; the reflectee is the prototypical byte vector.

objVectorMirror Prototypical mirror on object vectors; the reflectee is the prototypical object vector.

assignmentMirror Mirror on the assignment primitive; the actual reflectee is an empty object.

mirrorMirror Prototypical mirror on a mirror; the reflectee is slotsMirror.

slotsMirror Prototypical mirror on a plain object without code; the reflectee is an empty object.

blockMirror Prototypical mirror on a block.

methodMirror Prototypical mirror on a normal method.

blockMethodMirror Prototypical mirror on a block method.

methodActivationMirror
Prototypical mirror on a method activation.

blockMethodActivationMirror
Prototypical mirror on a block activation.

proxyMirror Prototypical mirror on a proxy.

fctProxyMirror Prototypical mirror on a fctProxy.

profilerMirror Prototypical mirror on a profiler.



71

SELF Virtual Machine Reference Option primitives

5.12  Option primitives

This section has not been updated to include all options present in SELF 4.0.

Option primitives control various aspects of the S ELF system and its inner workings. Many of
them are used to debug or instrument the SELF system and are probably of little interest to users.
The options most useful for users are listed in Table 2; other option primitives can be found in Ap-
pendix 5.B, and a list of all option primitives and their current settings can be printed with the
primitive _PrintOptionPrimitives.

Table 2   Some useful option primitives

Name Description

_PrintPeriod[:]† Print a period when reading a script file with _RunScript. Default: false.

_PrintScriptName[:] Print the file name when reading a script file. Default: false.

_Spy[:] Start the system monitor (see Appendix 5.A for details). Default: false.

_StackPrintLimit[:] Controls the number of stack frames printed by _PrintProcessStack. De-
fault: 20.

_DirPath[:] The default directory path for script files.

Each option primitive controls a variable within the virtual machine containing a boolean, integer,
or string (in fact, the option primitives can be thought of as “primitive variables”). Invoking the
version of the primitive that doesn’t take an argument returns the current setting; invoking it with
an argument sets the variable to the new value and returns the old value.

Try running the system monitor with_Spy: true. The system monitor will continuously display
various information about the system’s activities and your memory usage.

† The bracketed colon indicates that the argument is optional (i.e., there are two versions of the primitive, one taking
an argument and one not taking an argument). The bracket is not part of the primitive name. See text for details.
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5.13  Interfacing with other languages

This chapter describes how to access objects and call routines that are written in other languages
than SELF. We will refer to such entities as foreign objects and foreign routines. A typical use
would be to make a function found in a C library accessible in SELF. Three steps are necessary to
accomplish this:

• Write and compile a piece of “glue” code that specifies argument and result types for the
foreign routine and how to convert between these types and SELF objects.

• Link the resulting object code to the SELF virtual machine.

• Create a function proxy object (actually a foreignFct object) that represents the routine in
the SELF world.

Each of these steps is described in detail in the following sections.

5.13.1  Proxy and fctProxy objects

A foreign object is represented by a proxy object in the S ELF world. A proxy object is an object
that encapsulates a pointer to the foreign object it represents. In addition to the pointer to the for-
eign object, the proxy object contains a type seal. Atype seal is an immutable value that is assigned
to the proxy object, when it is created. The type seal is intended to capture type information about
the pointer encapsulated in the proxy. For example, proxies representing window objects should
have a different type seal than proxies representing event objects. By checking the type seal against
an expected value whenever a proxy is “opened”, many type errors can be caught. The last prop-
erty of proxy objects is that they can be dead or live. If an attempt is made to use the pointer in a
dead proxy object, an error results (deadProxyError). Proxy objects may be explicitly killed, by
sending the primitive message _Kill to them. Furthermore, they are automatically killed after
reading in a snapshot. This way problems with dangling references to foreign objects that were not
included in the snapshot are avoided.

FctProxy objects are similar to proxy objects: they have a type seal and are either live or dead.
However, they represent a foreign routine, rather than a foreign object. A foreign routine can be
invoked by sending the primitive messages_Call, _Call:{With:} , _CallAndConvert{Wit-
h:And:} to thefctProxy representing it. Note thatfctProxy objects are low-level. Most, if not
all, uses of foreign routines should use the interface provided by foreignFct objects.

Proxies (and fctProxies) can be freely cloned. However a cloned proxy will be dead. A dead
proxy is revived when it is used by a foreign function to, e.g., return a pointer. The return value of
the foreign function together with a type seal is stored into the dead proxy, which is then revived
and returned as the result of the foreign routine call. The motivation for this somewhat complicated
approach is that there will be several different kinds of proxies in a typical SELF system. Different
kinds of proxies may have different slots added, so rather than having the foreign routine figure out
which kind of proxy to clone for the result, the S ELF code calling the foreign routine must con-
struct and pass down an “empty” (dead) proxy to hold the result. This proxy is called aresult proxy
and it is the last argument supplied to the foreign function.
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5.13.2  Glue code

Glue code is responsible for the transition from SELF to foreign routines. It forms wrappers around
foreign routines. There is one wrapper per foreign routine. A wrapper takes a number of arguments
of type oop, and returns an oop (oop is the C++ type for “reference to S ELF object”). When a
wrapper is executed, it performs the following steps:

1. Check that the arguments supplied have the correct types.

2. Convert the arguments from S ELF representation to the representation that the foreign
routine needs.

3. Invoke the foreign routine on the converted arguments.

4. Convert the return value of the foreign routine to a S ELF object and return this as the
SELF level result.

To make it easier to write glue code, a special purpose language has been designed for this. The
result is that glue for a foreign routine will often consist of only a single line. The glue language is
implemented as a set of C++ preprocessor macros. Therefore, glue code is just a (rather peculiar)
kind of C++. Glue code can be in a file of its own, or – if it is glue for calling C++ routines – it can
be in the same file as the foreign routines, and compiled with them.

To make the definition of the glue language available, the file containing glue code must contain:

# include "_glueDefs.c.incl"

The file “_glueDefs.c.incl” includes a bunch of C++ header files that contain all the definitions
necessary for the glue. Of the included files, “glueDefs.h” is probably the most interesting in this
context. It defines the glue language and also contains some comments explaining it.

Since different foreign languages have different type systems and calling conventions the glue lan-
guage is actually not a single language, but one for each supported foreign language. Presently C
and C++ are supported. Section 5.13.5 describes C glue and section 5.13.9 describes C++ glue.

5.13.3  Compiling and linking glue code

Since glue code is a special form of C++ code, a C++ compiler is needed to translate it. The way
this is done may depend on the computer system and the available C++ compiler . The following
description applies to Sun SPARCstations using the GNU g++ compiler.

A specific example of how to compile glue code can be found in the directory containing thetoself
demo (see section 5.13.16 for further details). The makefile in that directory describes how to
translate a .c file containing glue into something that can be invoked from S ELF. This is a two
stage process: first the .c file is compiled into a .o file which is then linked (perhaps with other
.o files and libraries that the glue code depends on)† into a .so file (a so-called dynamic library).
While the compilation is straightforward, several issues concerning the linking must be explained.

† Note that many libraries are already included in the SELF virtual machine (e.g. libc.a) and hence
should not be added to the dynamic library.
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Linking. Before a foreign routine can be called it must be linked to the SELF virtual machine. The
linking can be done either statically, i.e. before SELF is started, or dynamically, i.e. while SELF is
running. The SELF system employs both dynamic and static linking, but users should only use dy-
namic linking, as static linking requires more understanding of the structure of the V irtual Ma-
chine. The choice between dynamic and static linking involves a trade-of f between safety and
flexibility as outlined in the following.

Dynamic linking has the advantage that it is done on demand, so only foreign routines that are ac-
tually used in a particular session will be loaded and take up space. Debugging foreign routines is
also easier, especially if the dynamic linker supports unlinking. The main disadvantages with dy-
namic linking is that more things can go wrong at run time. For example, if an object file contain-
ing a foreign routine can not be found, a run time error occurs. The Sun OS dynamic linker, ld.so,
only handles dynamic libraries which explains why the second stage of glue translation is neces-
sary.

Static linking, the alternative that was not chosen for S ELF, has the advantage that it needs to be
done only once. The statically linked-in files will then be available for ever after. The main disad-
vantages are that the linked-in files will always take up space whether used or not in a given SELF
session, that the VM must be completely relinked every time new code is added, and that debug-
ging is harder because there is no way to unlink code with bugs in. For these reasons the following
examples all use dynamic linking.

5.13.4  A simple glue example: calling a C function

Suppose we have a C function that encrypts text strings in some fancy way. It takes two arguments,
a string to encrypt and a key, and returns a string which is the result of the encryption. To use this
function from SELF, we write a line of C glue. Here is the entire file, “encrypt.c”, containing both
the encryption function and the glue:†

/* Make glue available by including it. */
# include "incls/_glueDefs.c.incl"

/* Naive encryption function. */
char *encrypt(char *str, int key) {

static char res[1000];
int i;
for (i = 0; str[i]; ++i)

res[i] = str[i] + key;
res[i] = ’\0’;
return res;

}

† If you try this example, be sure to type in all the “double” commas - they are necessary because
of technical details with C++ macros.
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/* Make glue expand to full functions, not just prototypes. */
# define WHAT_GLUE FUNCTIONS
 C_func_2(string,, encrypt, encrypt_glue,, string,, int,)
# undef WHAT_GLUE

A few words of explanation: the last three lines of this file contain the glue code. First defining
WHAT_GLUE to be FUNCTIONS, makes the following line expand into a full wrapper function (de-
fining WHAT_GLUE to be PROTOTYPES instead, will cause the C_func_2 line to produce a func-
tion prototype only). The line containing the macroC_func_2 is the actual wrapper forencrypt.
The “2” designates that encrypt takes 2 arguments. The meaning of the arguments, from left to
right are:

• “string,”: specifies that encrypt returns a string argument.

• “encrypt”: name of function we are constructing wrapper for.

• “encrypt_glue”: name that we want the wrapper function to have.

• An empty argument signifying that encrypt is not to be passed a failure handle (explained
later).

• “string,”: specifies that the first argument to encrypt is a string.

• “int,”: specifies that the second argument to encrypt is an int.

Having written this file, we now prepare a makefile to compile and link it. To do this, we can ex-
tend the makefile in objects/glue/{sun4,svr4} (depending on OS in use) and then run
make. This results in the shared library file encrypt.so. Finally, to try it out, we can type these
commands (at the SELF prompt or in the UI):

> _AddSlotsIfAbsent: ( | encrypt | )
lobby

> encrypt: ( foreignFct copyName: ’encrypt_glue’
 Path: ’encrypt.so’ )

lobby

> encrypt
<C++ function(encrypt_glue)>

> encrypt value: ’Hello Self’ With: 3
’Khoor#Vhoi’

> encrypt value: ’Khoor#Vhoi’ With: -3
’Hello Self’

Comparing the signature for the function encrypt with the arguments to the C_func_2 macro it
is clear that there is a straightforward mapping between the two. One day we hope to find the time
to write a SELF program that can parse a C or C++ header file and generate glue code correspond-
ing to the definitions in it. In the meantime, glue code must be handwritten.
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5.13.5  C glue

C glue supports accessing C functions and data from SELF. There are three main parts of C glue:

• Calling functions.

• Reading/assigning global variables.

• Reading/assigning a component in a struct that is represented by a proxy object in SELF.

In addition, C++ glue for creating objects can be used to create C structs (see section 5.13.9). The
following sections describe each of these parts of C glue.

5.13.6  Calling C functions

The macro C_func_N where N is 0, 1, 2, ... is used to “glue in” a C function. The numberN denotes
the number of arguments that should be given at the SELF level, when calling the function. This
number may be different from the number of arguments that the C function takes since, e.g., some
argument conversions (see below) produce two C ar guments from one SELF object. Here is the
general syntax for C_func_N:

C_func_N(res_cnv,res_aux, fexp, gfname, fail_opt, c0,a0, ... cN,aN)

Compare this with the glue that was used in the encrypt example in section 5.13.4:

C_func_2(string,, encrypt, encrypt_glue,, string,, int,)

The meaning of each argument to C_func_N is as follows:

• res_cnv,res_aux: these two arguments form a “conversion pair” that specifies how the
result that the function returns is converted to a S ELF object. In the encrypt example,
where the function returns a null terminated string, res_cnv has the value string, and
res_aux is empty. Table 3 lists all the possible values for the res_cnv,res_aux pair.

• fexp is a C expression which evaluates to the function that is being glued in. In the simplest
case, such as in the encrypt example, the expression is the name of a function, but in gen-
eral it may be any C expression, involving function pointers etc., which in a global context
evaluates to a function.

• gfname: the name of the function which the C_func_N macro expands into. In the en-
crypt example, the convention of appending _glue to the C function’s name was used.
When accessing a glued-in function from SELF, the value of gfname is the name that must
be used.

• fail_opt: there are two possible values for this argument. It can be empty (as in the exam-
ple) or it can be fail. In the latter case, the C function being called is passed an additional
argument that will be the last argument and have type “void *”. Using this argument, the C
function may abort its execution and raise an exception. The result is that the “IfFail block”
in SELF will be invoked.
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• ci,ai: each of these pairs describes how to convert a S ELF level argument to one or more
C level arguments.† For example, in the glue for encrypt, c0,a0 specifies that the first ar-
gument to encrypt is a string. Likewise c1,a1 specifies that the second argument is an in-
teger. Note that in both these cases, the a-part of the conversion is empty. Table 3 lists all
the possible values for the ci,ai pair.

Handling failures. Here is a slight modification of the encryption example to illustrate how the C
function can raise an exception that causes the “IfFail block” to be invoked at the SELF level:

/* Make glue available by including it. */
# include "incls/_glueDefs.c.incl"

/* Naive encryption function. */
char *encrypt(char *str, int key, void *FH) {

static char res[1000];
int i;
if (key == 0) {

failure(FH, "key == 0 is identity map");
return NULL;

}
for (i = 0; str[i]; i++)
res[i] = str[i] + key;

res[i] = ’\0’;
return res;

}

/* Make glue expand to full functions, not just prototypes. */
# define WHAT_GLUE FUNCTIONS

C_func_2(string,, encrypt, encrypt_glue, fail, string,, int,)
# undef WHAT_GLUE

Observe that the fail_opt argument now has the value fail and that the encrypt function
raises an exception, using failure, if the key is 0. There are two ways to raise exceptions:

extern "C" void failure(void *FH, char *msg);

extern "C" void unix_failure(void *FH, int err = -1);

In both cases, the FH argument is the “failure handle” that was passed by the C_func_N macro.
The second argument to failure is a string. It will be passed to the “IfFail block” in S ELF. un-
ix_failure takes an optional integer as its second argument. If this integer has the value -1, or
is missing, the value of errno is used instead. The integer is interpreted as a UNIX error number,
from which a corresponding string is constructed. The string is then, as forfailure, passed to the
“IfFail block” at the call site in SELF.

A word of warning: after calling failure or unix_failure a normal return must be done.
The value returned (in the example NULL) is ignored.

† The any conversion is the lone exception: it takes two SELF objects and produces one C argument.
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5.13.7  Reading and assigning global variables

Reading the value of a global variable is done using the C_get_var macro. Assigning a value to
a global variable is done usingC_set_var. Both macros expand into a C++ function that converts
between SELF and C representation, and reads or assigns the variable. Here is the general syntax:

C_get_var(cnvt_res,aux_res, expr, gfname)

C_set_var(var, expr_c0,expr_a0, gfname)

A concrete example is reading the value of the variable errno, which can be done using:

C_get_var(int,, errno, get_errno_glue)

The meaning of the each argument is:

• cnvt_res,aux_res: how to convert the value of the global variable that is being read to a
SELF object. In the errno example, cnvt_res is int and aux_res is empty, since the
type of errno is int. The cnvt_res,aux_res can be any one of the result conversions
found in Table 3.

• expr is the variable whose value is being read. In the errno example, it is simply errno,
but in general, it may actually be any expression that is valid in a global context, even an ex-
pression involving function calls.

• gfname: the name of the C++ function that C_get_var or C_set_var expands into.

• var is the name of a global variable that a value is assigned to. In general, var, may be any
expression that in a global context evaluates to an l-value.

• expr_c0,expr_a0: when assigning to a variable, the value it is assigned is obtained by
converting a SELF object to a C value. The expr_c0,expr_a0 pair, which can be any one
of the argument conversions listed in Table 3, specifies how to do this conversion.

5.13.8  Reading and assigning struct components

Reading the value of a struct component or assigning a value to it is similar to doing the same op-
erations on a global variable. The difference is that the struct must somehow be specified. This is
taken care of by the macros C_get_comp and C_set_comp. The general syntax is:

C_get_comp(cnvt_res,aux_res, cnvt_strc,aux_strc, comp, gfname)

C_set_comp(cnvt_strc,aux_strc, comp, expr_c0,expr_a0, gfname)

Here is an example, assigning to the sin_port field of a struct sockaddr_in (this struct is de-
fined in /usr/include/netinet/in.h):

struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};
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The struct is represented by a proxy object:

char *socks = "type seal for sockaddr_in proxies";

C_set_comp(proxy,(sockaddr_in *,socks), .sin_port, short,,
set_sin_port_glue)

The sockaddr_in  example defines a function,set_sin_port_glue , which can be called from
SELF. The function takes two ar guments, the first being a proxy representing a sockaddr_in
struct, the second being a short integer. After converting types, set_sin_port_glue performs
the assignment

(*first_converted_arg).sin_port = second_converted_arg.

In general the meaning of the C_get_comp and C_set_comp arguments is:

• cnvt_res,aux_res: how to convert the value of the component that is being read to a
SELF object. Any of the result conversions found in Table 3 may be applied.

• cnvt_strc,aux_strc: the conversion that is applied to produce a struct upon which the
operation is performed. In the sin_port example, this conversion is a proxy conversion,
implying that in SELF, the struct whose sin_port component is assigned is represented by
a proxy object. In general, any of the argument conversions from Table 3 that results in a
pointer, may be used.

• comp is the name of the component to be read or assigned. In the sin_port example, this
name is “.sin_port”. Note that it includes a “ .”. This, e.g., allows handling pointers to
int’s by pretending that it is a pointer to a struct and operating on a component with an
empty name.

• gfname: the name of the C++ function that C_get_comp or C_set_comp expands into.

• expr_co,expr_a0: when assigning to a component, the value it is assigned is obtained by
converting a SELF object to a C value. The expr_co,expr_a0 pair, which can be any one
of the argument conversions listed in Table 3, specifies how to do this conversion.

5.13.9  C++ glue

Since C++ is a superset of C, all of C glue can be used with C++. In addition, C++ glue provides
support for:

• Constructing objects using the new operator.

• Deleting objects using the delete operator.

• Calling member functions on objects.

Each of these parts will be explained in the following sections.
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5.13.10  Constructing objects

In C++, objects are constructed using the new operator. Constructors may take ar guments. The
macros CC_new_N where N is a small integer, support calling constructors with or without argu-
ments. Calling a constructor is similar to calling a function, so for additional explanation, please
refer to section 5.13.6. Here is the general syntax for constructing objects using C++ glue:

CC_new_N(cnvt_res,aux_res, class, gfname, c0,a0, c1,a1, ... cN,aN)

For example, to construct a sockaddr_in† object, the following glue statement could be used:

CC_new_0(proxy,(sockaddr_in *,socks), sockaddr_in, new_sockaddr_in)

The meanings of the CC_new_N arguments are as follows:

• cnvt_res,aux_res: the result of calling the constructor is an object pointer. The result
conversion pair cnvt_res,aux_res (see Table 3), specifies how this pointer is converted
to a SELF object before being returned. In the sockaddr example, the proxy result conver-
sion is used.

• class is the name of the class (or struct) that is being instantiated.

• gfname: the name of the C++ function that the CC_new_N macro expands into.

• ci,ai: if the constructor takes arguments, these arguments must be converted from S ELF
representation to C++ representation. The arguments conversion pairs ci,ai specify how
each argument is converted. See Table 3 for a description of all argument conversions. In
the sockaddr example, there are no arguments.

5.13.11  Deleting objects

C++ objects can have destructors that are executed when the objects are deleted. To ensure that the
destructor is called properly, the delete operator must know the type of the object being deleted.
This is ensured by using the CC_delete macro, which has the following form:

CC_delete(cnvt_obj,aux_obj, gfname)

For example, to delete sockaddr_in objects (constructed as in the previous section), theCC_de-
lete macro should be used in this manner:

CC_delete(proxy,(sockaddr_in *,socks), delete_sockaddr_in)

In general, the meaning of the arguments given to CC_delete is:

• cnvt_obj,aux_obj: this pair can be any of the argument conversions found in Table 3
that produces a pointer to the object that will be deleted.

• gfname: the name of the C++ function that this invocation of CC_delete expands into.

† sockaddr_in is actually not a C++ class, but a C struct. However, C++ treats structs and classes the same.
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5.13.12  Calling member functions

Calling member functions is similar to calling “plain” functions, so please also refer to section
5.13.6. The difference is that an additional object must be specified: the object upon which the
member function is invoked (the receiver in S ELF terms). Calling a member function is accom-
plished using one of the macros

CC_mber_N(cnvt_res,aux_res, cnvt_rec,aux_rec, mname, gfname,
fail_opt, c0,a0, c1,a1, ..., cN,aN)

For example here is how to call the member function zock on a sockaddr_in object given by a
proxy:†

CC_mber_0(bool,, proxy,(sockaddr_in *,socks), zock, zock_glue,)

The arguments to CC_mber_N are:

• cnvt_res,aux_res: this pair, which can be any of the result conversions from Table 3,
specifies how to convert the result of the member function before returning it to S ELF. For
example, the zock member function returns a boolean.

• cnvt_rec,aux_rec: the object on which the member function is invoked. Often this will
be a proxy conversion as in the zock example.

• mname is the name of the member function. In general, it may be any expression, such that
receiver->mname evaluates to a function.

• gfname is the name of the C++ function that the CC_mber_N macro expands into.

• fail_opt: whether or not to pass a failure handle to the member function (refer to section
5.13.6 for details).

• ci,ai: these are argument conversion pairs specifying how to obtain the arguments for the
member function. Any conversion pair found in Table 3 may be used.

5.13.13  Conversion pairs

A major function of glue code is to convert between SELF objects and C/C++ values. This conver-
sion is guarded by so-called conversion pairs. A conversion pair is a pair of arguments given to a
glue macro. It handles converting one or at most a few types of objects/values. There are different
conversion pairs for converting from SELF objects to C/C++ values (called argument conversion
pairs) and for converting from C/C++ values to SELF objects (called result conversion pairs).

5.13.14  Argument conversions – from SELF to C/C++

An argument conversion is given a S ELF object and performs these actions to produce a corre-
sponding C or C++ value:

† In fact there is no such member function defined on sockaddr_in objects.
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• check that the S ELF object† it has been given is among the allowed types. If not, report
badTypeError (invoke the failure block (if present) with the argument ’badTypeEr-
ror’).

• check that the object can be converted to a C/C++ value without overflow or any other error.
If not, report the relevant error.

• do the conversion, i.e., construct the C/C++ value corresponding to the given SELF object.

Table 3 lists all the available argument conversions. Each row represents one conversion, with the
first two columns designating the conversion pair. The third column lists the types of SELF objects
that the conversion pair accepts. The fourth column lists the C types that it produces. The fifth col-
umn lists the kind of errors that can occur during the conversion. Finally, the sixth column contains
references to numbered notes. The notes are found in the paragraphs following the table.

† The any conversion is the only conversion that has more than one incoming object.

Table 3 : Argument conversions - from SELF to C/C++

Conversion
Second

part
SELF type C/C++ type Errors Notes

bool boolean int (0 or 1) badTypeError

char smallInt char badTypeError
overflowError

1

signed_char smallInt signed char badTypeError
overflowError

unsigned_char smallInt unsigned char badSignError
badTypeError
overflowError

short smallInt short badTypeError
overflowError

signed_short smallInt signed short badTypeError
overflowError

unsigned_shor
t

smallInt unsigned short badSignError
badTypeError
overflowError

int smallInt int badTypeError

signed_int smallInt signed int badTypeError

unsigned_int smallInt unsigned int badSignError
badTypeError

long smallInt long badTypeError

signed_long smallInt signed long badTypeError
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unsigned_long smallInt unsigned long badSignError

smi smallInt smi badTypeError 2

unsigned_smi smallInt smi badSignError
badTypeError

2

float float float badTypeError 3

double float double badTypeError 3

long_double float long double badTypeError 3

bv ptr_type byte vector ptr_type badTypeError 4

bv_len ptr_type byte vector ptr_type, int badSizeError
badTypeError

4, 5

bv_null ptr_type byte vector/0 ptr_type badTypeError 4, 6

bv_len_null ptr_type byte vector/0 ptr_type, int badSizeError
badTypeError

4, 5, 6

cbv ptr_type byte vector ptr_type badTypeError 7

cbv_len ptr_type byte vector ptr_type, int badSizeError
badTypeError

7

cbv_null ptr_type byte vector/0 ptr_type badTypeError 7

cbv_len_null ptr_type byte vector/0 ptr_type, int badSizeError
badTypeError

7

string byte vector char * badTypeError
nullCharError

8

string_len byte vector char *, int badTypeError
nullCharError

5, 8

string_null byte vector/0 char * badTypeError
nullCharError

6, 8

string_len_null byte vector/0 char *, int badTypeError
nullCharError

5, 6, 8

proxy (ptr_type,
 type_seal)

proxy ptr_type,
!= NULL

badTypeError
badTypeSealError
deadProxyError,
nullPointerError

9

proxy_null (ptr_type,
 type_seal)

proxy ptr_type badTypeError
badTypeSealError
deadProxyError

9

any_oop any object oop 10

Table 3 : Argument conversions - from SELF to C/C++

Conversion
Second

part
SELF type C/C++ type Errors Notes
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1. The C type char has a system dependent range. Either 0..255 or -128..127.

2. The type smi is used internally in the virtual machine (a 30 bit integer).

3. Precision may be lost in the conversion.

4. The second part of the conversion is a C pointer type. The address of the first byte in the byte
vector, cast to this pointer type, is passed to the foreign routine. It is the responsibility of the for-
eign routine not to go past the end of the byte vector. The foreign routine should not retain pointers
into the byte vector after the call has terminated. Note: canonical strings can not be passed through
a bv conversion (badTypeError will result). This is to ensure that they are not accidentally mod-
ified by a foreign function.

5. This conversion passes two values to the foreign routine: a pointer to the first byte in the byte
vector, and an integer which is the length of the byte vector divided by sizeof(*ptr_type). If
the size of the byte vector is not a multiple of sizeof(*ptr_type), badSizeError results.

6. In addition to accepting a byte vector , this conversion accepts the integer 0, in which case a
NULL pointer is passed to the foreign routine.

7. The cbv conversions are like thebv conversions except that canonical strings are allowed as ac-
tual arguments. A cbv conversion should only be used if it is guaranteed that the foreign routine
does not modify the bytes it gets a pointer to.

8. All the string conversions take an incoming byte vector, copy the bytes part, add a trailing null
char, and pass a pointer to this copy to the foreign routine. After the call has terminated, the copy
is discarded. If the byte vector contains a null char, nullCharError results.

9. The type_seal is an int or char * expression that is tested against the type seal value in the
proxy. If the two are different, badTypeSealError results. The special value ANY_SEAL will
match the type seal in any proxy. Note that the proxy conversion will fail with nullPointer-
Error if the proxy object it is given encapsulates a NULL pointer.

10. The any_oop conversion is an escape: it passes the SELF object unchanged to the foreign rou-
tine.

11. The oop conversion is mainly intended for internal use. The second ar gument is the name of
an oop subtype. After checking that the incoming ar gument points to an instance of the subtype,
the pointer is cast to the subtype.

12. The any conversion is dif ferent from all other conversions in that it expects two incoming
SELF objects. The actions of the conversion depends on the type of the first object in the following
way. If the first object is an integer, the second argument must also be an integer; the two integers
are converted to C int’s, the second is shifted 16 bits to the left and they are or’ed together to pro-

oop oop subtype corresponding
object

oop (subtype) badTypeError 11

any C/C++ type int/float/proxy/
byte-vector, int

int/float/ptr/
ptr

badIndexError
badTypeError
deadProxyError

12

Table 3 : Argument conversions - from SELF to C/C++

Conversion
Second

part
SELF type C/C++ type Errors Notes
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duce the result. If the first object is a float, it is converted to a C float and the second object is
ignored. If the first object is a proxy, the result is the pointer represented by the proxy, and the sec-
ond argument is ignored. If the first object is a byte vector , the second object must be an integer
which is interpreted as an index into the byte vector; the result is a pointer to the indexed byte.

5.13.15  Result conversions - from C/C++ to SELF

A result conversion is given a C or C++ value of a certain type and performs these actions to pro-
duce a corresponding SELF object:

• check that the C/C++ value can be converted to a SELF object with no overflow or other er-
ror occurring. If not, report the error.

• do the conversion, i.e., construct the SELF object corresponding to the given C/C++ value.

Table 4 lists all the available result conversions. Each row represents one conversion, with the first
two columns designating the conversion pair. The third column lists the type of C or C++ value
that the conversion pair accepts. The fourth column lists the type of S ELF object the conversion
produces. The fifth column lists the kind of errors that can occur during the conversion. Finally, the
sixth column contains references to numbered notes. The notes are found in the paragraphs follow-
ing the table.

.

Table 4 : Result conversions - from C/C++ to SELF

Conversion
Second

part
C/C++ type SELF type Errors Notes

void void smallInt (0)

bool int boolean

char char smallInt

signed_char signed char smallInt

unsigned_char unsigned char smallInt

short short smallInt

signed_short signed short smallInt

unsigned_short unsigned short smallInt

int int smallInt overflowError

signed_int signed int smallInt overflowError

unsigned_int unsigned int smallInt overflowError

long long smallInt overflowError

signed_long signed long smallInt overflowError

unsigned_long unsigned long smallInt overflowError
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1. This conversion returns an integer value, unless the integer has the value n (the second part of
the conversion; often -1). If the integer is n, the conversion interprets the return value as a U NIX
error indicator. It then constructs a string describing the error (by looking at errno) and invokes
the “IfFail block” with this string.

2. Precision may be lost.

3. This conversion fails with nullPointerError if attempting to convert a NULL pointer.

4. The ptr_type is the C/C++ type of the pointer. The type_seal is an expression of type int
or char *.The conversion constructs a new proxy object, stores the C/C++ pointer in it and sets
its type seal to be the value of type_seal.

5. If the pointer is n (often n is NULL), the conversion fails with a UNIX error, similar to the way
int_or_errno may fail.

6. The fct_proxy, fct_proxy_null and fct_proxy_or_errno conversions are similar to
the corresponding proxy conversions. The difference is that they produce afctProxy object rath-
er than a proxy object. Also, their second part is a triple rather than a pair . The extra component
specifies how many arguments the function takes, if called. The special keyword unknownNoO-
fArgs or any nonnegative integer expression can be used here.

smi smi smallInt overflowError

int_or_errno n int int a UNIX error 1

float float float 2

double double float 2

long_double long double float 2

string char * byte vector nullPointerError 3

proxy (ptr_type,
 type_seal)

ptr_type proxy nullPointerError 3, 4, 8

proxy_null (ptr_type,
 type_seal)

ptr_type proxy 4, 8

proxy_or_errn
o

(ptr_type,
 type_seal,
n)

ptr_type proxy a UNIX error 4, 5, 8

fct_proxy (ptr_type,
type_seal,
arg_count)

ptr_type fctProxy nullPointerError 3, 6, 8

fct_proxy_null (ptr_type,
type_seal,
arg_count)

ptr_type fctProxy 6, 8

oop oop corresponding
object

7, 8

Table 4 : Result conversions - from C/C++ to SELF

Conversion
Second

part
C/C++ type SELF type Errors Notes
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7. This conversion is an escape: it passes the C value unchanged to SELF. It is an error to use it if
the C value is not an oop.

8. The proxy (fctProxy) object that is returned by these conversions is not being created by the
glue code. Rather a proxy (fctProxy) must be passed down from the S ELF level. This proxy
(fctProxy), a result proxy, will then be side effected by the glue: the value that the foreign func-
tion returns will be stored in the result proxy together with the requested type seal. It is required
that the result proxy is dead when passed down (else a liveProxyError results). After being
side-effected and returned, the result proxy is live. The result proxy is the last ar gument of the
function that the glue macro expands to.

5.13.16  A complete application using foreign functions

This section gives a description of a complete application which uses foreign functions. The aim
is to present a realistic and complete example of how foreign functions may be used. The complete
source for the example is found in the directory objects/applications/serverDemo in the
SELF distribution.

The example used is an application that allows S ELF expressions to be easily evaluated by non-
SELF processes. Having this, it then becomes possible to start S ELF processes from a U NIX
prompt (shell) or to specify pipe lines in which some of the processes are SELF processes. For ex-
ample in

proto% cat someFile | tokenize | sort -r | capitalize | tee lst

it may be the case that the filterstokenize and capitalize  perform most of their work in SELF.
Likewise, the command

proto% mail

may invoke some fancy mail reader written in SELF rather than the standard UNIX mail reader.

To see how the above can be accomplished, please refer to Figure 3 below. The left side of the fig-
ure shows the external view of a typical UNIX process. It has two files: stdin and stdout (for sim-
plicity we ignore stderr). Stdin is often connected to the keyboard so that characters typed here can
be read from the file stdin. Likewise, stdout is typically connected to the console so that the process
can display output by writing it to the file stdout. Stdin and stdout can also be connected to “regu-
lar” files, if the process was started with redirection. The right side of Figure 3 shows a two stage
pipe line. Here stdout of the first process is connected to stdin of the second process.

Figure 5. A single UNIX process and an pipe line

wc
stdin stdout lsstdin stdout

wc
stdin stdout

|
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Figure 3 illustrates a simple trick that in many situations allows S ELF processes to behave as if
they are full-fledged UNIX processes. A S ELF process is represented by a “real” U NIX process
which transparently communicates with the SELF process over a pair of connected sockets. The
communication is bidirectional: input to the UNIX process is relayed to the SELF process over the
socket connection, and output produced by the SELF process is sent over the same socket connec-
tion to the UNIX process which relays it to stdout. The right part of Figure 3 shows how the UNIX/
SELF process pair can fit seamlessly into a pipe line.

Source code that facilitates setting up such UNIX/SELF process pairs is included in the SELF dis-
tribution. The source consists of two parts: one being a SELF program (called server), the other be-
ing a C++ program (called toself). When the server is started, it creates a socket, binds a name to
it and then listens for connections on it. toself establishes connections to the server program.
The first line that is transmitted when a connection has been set up goes fromtoself to the server.
The line contains a SELF expression. Upon receiving it, the server forks a new process to evaluate
the expression in the context of the lobby augmented with a slot, stdio, that contains aunixFile-
like object that represents the socket connection. When the forked process terminates, the socket
connection is shut down. The toself UNIX process then terminates.

The SELF expression that forms the SELF process is specified on the command line whentoself
is started. For example, if the server has been started, the following can be typed at the U NIX
prompt:

proto% toself stdio writeLine: 5 factorial printString
120

proto% echo something | toself capitalize: stdio
SOMETHING

proto% toself capitalize: stdio
Write some text that goes to stdin of the toself program
WRITE SOME TEXT THAT GOES TO STDIN OF THE TOSELF PROGRAM
More text
MORE TEXT
^D

Figure 6. A SELF process and how it fits into a pipe line

capitalize
stdin stdout

ls
stdin stdout
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stdin stdout
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proto%

If you want to try out these examples, locate the filesserver.self , socks.so and toself. The
path name of the file socks.so is hardwired in the file server.self so please make sure that it
has been set correctly for your system. Then file in the world and type [server start] fork at
the SELF prompt. Now you can go back to the U NIX prompt and try out the examples shown
above.

5.13.17  Outline of toself

toself is a small C++ program found in the file toself.c. It operates in the three phases out-
lined above:

1. Try to connect to a well-known port number on a given machine (the function estab-
lishConnection does this).

2. Send the command line arguments over the connection established in 1 (the safeWrite
call in main does this).

3. While there is more input and the SELF process has not shut down the socket connection,
relay from stdin to the socket connection and from the socket connection to stdout (the func-
tion relay does this).

5.13.18  Outline of server

The server is a SELF program. It is found in the fileserver.self. When the server is started, the
following happens:

1. Create a socket, bind a name to it and start listening.

2. Loop: accept a connection and fork a new process (both step 1 and 2 are performed by the
method server start). The forked process executes the method server handleRequest
which:

a. Reads a line from the connection.

b. Sets up a context with a slot stdio referring to the connection.

c. Evaluates the line read in step (a) in this context.

d. Closes the connection.

5.13.19  Foreign functions and glue needed to implement server

The server program needs to do a number of UNIX calls to create sockets and bind names to them
etc. The calls needed aresocket, bind, listen, accept and shutdown. The first three of these
are only called in a fixed sequence, so to make things easier , a small C++ function socket_-
bind_listen , that bundles them up in the right sequence, has been written. Theaccept function
is more general than what is needed for this application, so a wrapper function,simple_accept,
has been written. The result is that the server needs to call only three foreign functions:socket_-
bind_listen, simple_accept and shutdown. Glue for these three functions and the source
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for the first two is found in the filesocks.c. This file is compiled and linked using theMakefile.
The result is a shared object file, socks.so.

5.13.20  Use of foreign functions in server.self

The server program is implemented using foreignFct objects. There is only a few lines of code
directly involved in setting this up. First the foreignFct prototype is cloned to obtain a “local
prototype”, called socksFct, which contains the path for the socks.so file. socksFct is then
cloned each time a foreignFct object for a function defined in socks.so is needed. For exam-
ple, in traits socket, the following method is found:

copyPort: portNumber = ( "Create a socket, do bind, then listen."
| sbl = socksFct copyName: ’socket_bind_listen_glue’. |
sbl value: portNumber With: deadCopy.

).

This method copies a socket object and returns the copy . The local slot sbl is initialized to a
foreignFct object. The body of the method simply sends value:With: to the foreignFct
object. The first argument is the port number to request for the socket, the second ar gument is a
deadCopy of self (socket objects are proxies and socket_bind_listen returns a proxy, so it
must be passed a dead proxy to revive and store the result in; see section 5.13.1).

There are only three uses of foreignFct objects in the server and in all three cases, the for-
eignFct object is encapsulated in a method as illustrated above.

In general the design of foreignFct objects has been aimed at making the use of them light
weight. When cloning them, it is only necessary to specify the minimal information: the name of
the foreign function. They can be encapsulated in a method thus localizing the impact of redesigns.
The complications of dynamic loading and linking are handled automatically, as is the recovery of
dead fctProxies.



91

SELF Virtual Machine Reference The system monitor

Appendix 5.A The system monitor

The SELF system contains a system monitor to display information about the internal workings of
the system such as memory management and compilation. It is invoked with_Spy: true (there
is are shortcuts in the shell, spyOn and spyOff). When it is active, the system monitor takes over
a portion of your screen with a window that looks like this:

The indicators in the left part of the display correspond to various internal activities and events. On
the very left are the CPU bars which show how much CPU is used in various parts of the system.
The following table lists the individual indicators:

Table 5   The system monitor display: indicators

CPU Bar What It Means

VM CPU time spent executing in the VM, i.e. for primitives, garbage collection etc.

Lkup CPU time used by compile-time and run-time lookups.

Comp CPU time spent by the SELF compilers. The black part stands for time consumed by the non-inling
compiler (NIC), the gray part for the simple inlining compiler (SIC).

Self CPU time spent executing compiled SELF code. The black part stands for time consumed by unop-
timized (NIC) code, the gray part for optimized (SIC) code.

CPU This bar displays the percentage of the CPU that the SELF process is getting (a completely filled bar
equals 100% CPU utilization by SELF). Black stands for user time, gray for system time.

Dot Below the CPU bar is a small dot which moves whenever a process switch takes place.

Indicator What It Means

X-compiling Y The X compiler (where X is either “nic” or “sic”) is compiling the method named Y into machine
code.

scavenge The SELF object memory is being scavenged. A scavenge is a fast, partial garbage collection (see
[Ung84], [Ung86], [Lee88]).

GC The SELF object memory is being fully garbage-collected.

flushing SELF is flushing the code cache.

compacting SELF is compacting the code cache.

reclaiming SELF is reclaiming space in the code cache to make room for a new method.

sec reclaim SELF is flushing some methods in the code cache because there is not enough room in one of the
secondary caches (the caches holding the debugging and dependency information).

ic flush SELF is flushing all inline caches.

LRU sweep SELF is examining methods in the code cache to determine whether they have been used recently.

object memory code cache
indicators and

VM memory display
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page N N page faults occurred during the last time interval ( N is not displayed if N=1). The time interval
currently is 1/25 of a second.

read SELF is blocked reading from a “slow” device, e.g., the keyboard or mouse.

write SELF is blocked writing to a “slow” device, e.g., the screen.

disk in/out SELF is doing disk I/O.

UNIX SELF is blocked in some UNIX system call other than read or write.

idle SELF has nothing to do. (shows up only when using processes.)

The middle part of the display contains some information on VM memory usage displayed in tex-
tual form, as described below:

Table 6   VM memory status information

Name Description

RSRC Size and utilization of the resource area (an area of memory used for temporary storage by the
compiler and by primitives).

C-Heap Number of bytes allocated on the C heap by SELF (excluding the memory and code spaces and the
resource area).

The memory status portion of the system monitor consists of bars representing memory spaces and
their utilization; all bars are drawn to scale relative to one another , their areas being proportional
to the actual sizes of the memory spaces. The next table explains the details of this part of the sys-
tem monitor’s display.

Table 7   The system monitor display: memory status

Space Description

object memory The four (or more) bars represent (from top to bottom) eden, the two survivor spaces, and subse-
quent bars are segments of old space. The left and right parts of each bar represent the space used
by “plain” objects and byte vectors, respectively.† The above picture shows a situation in which
about half of old space is filled with plain objects and about 25% is filled with byte vectors. A frac-
tion of old space’s used portions is currently paged out (gray areas).

Below the old space is a ruler , marked in 1Mb intervals, showing the total allocated in old space
(extending line at the left). To the right is a red bar representing how much of old space is reserved
for use by the V irtual Machine, and a yellow bar representing the low space threshold (when
crossed, the scheduler is notified and a garbage colelction may take place).

code cache These four bars represent the cache holding compiled methods with their associated debugging and
dependency information. The bar labelled ‘code’ represents the cache containing the actual
machine code for methods (including some headers and relocation information); it is divided into
code generated by the primary (non-inlining) compiler , or NIC, and code generated by the
secondary, smarter compiler (SIC). The cache represented by the bar labelled ‘deps’ contains
dependency information for the compiled methods, and the cache represented by the bar labelled
‘debug’ contains the debugging information. The three-way split reduces the working set size of
the code cache. The cache represented by the bar labelled ‘PICs’ contains polymorphic inline
caches.

† The segregation of (the vector of bytes in) byte vectors from other objects is an implementation detail improving
scavenging and scanning performance (see [Lee88] and [CUL89] for details).



93

SELF Virtual Machine Reference The system monitor

Color Meaning

black Allocated, residing in real memory.

gray Allocated, paged out.†

white Unallocated memory.

† The residency information is updated only once a second for ef ficiency reasons; all other information is updated
continuously. Also, the gray area does not indicate what is paged out, only how much.
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Appendix 5.B Primitives

Primitives are SELF methods implemented by the virtual machine. The first character of a primi-
tive’s selector is an underscore (‘_’). You cannot define primitives yourself (unless you modify the
Virtual Machine), nor can you define slots beginning with an underscore.

5.B.1  Primitive failures

Every primitive call can take an optional argument defining how errors should be handled for this
call. To do this, the primitive is extended with an IfFail: argument. For example, _AsObject
becomes _AsObjectIfFail:, and _IntAdd: becomes _IntAdd:IfFail:.

> 3 _IntAdd: ’a’ IfFail: [ | :error. :name |
(name, ’ failed with ’, error, ’.’) printLine. 0 ]

_IntAdd: failed with badTypeError.
0 The primitive returns the result of evaluating the failure block.
>

When a primitive fails, if the primitive call has an IfFail: part, the message value:With: is
sent to the IfFail: argument, passing two strings: the name of the primitive and an error string
indicating the reason for failure. If the failing primitive call does not have an IfFail: part, the
message primitive:FailedWith:  is sent to the receiver of the primitive call with the same two
strings as arguments.

The result returned by the error handler becomes the result of the primitive operation (0 in our ex-
ample); execution then continues normally. If you want the program to be aborted, you have to do
this explicitly within the error handler, for example by calling the standard error: method de-
fined in the default world.

The following table lists the error string prefixes passed by the VM to indicate the reason of the
primitive failure. If the error string consists of more than the prefix it will reveal more details about
the error.

Table 8   Primitive failures

Prefix Description

primitiveNotDefinedError Primitive not defined.

primitiveFailedError General primitive failure (for example, an argument has an invalid value).

badTypeError The receiver or an argument has the wrong type.

badTypeSealError Proxy’s type seal did not match expected type seal.

divisionByZeroError Division by zero.

overflowError Integer overflow. This can occur in integer arithmetic primitives or in U NIX
(when the result is too large to be represented as an integer).

badSignError Integer receiver or argument has wrong sign.

alignmentError Bad word alignment in memory.

badIndexError The vector index (e.g. in _At:) is out of bounds (too large or negative).
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badSizeError An invalid size of a vector was specified, e.g. attempting to clone a vector with a
negative size (see _Clone:Filler: and _CloneBytes:Filler: below).

reflectTypeError A mirror primitive was applied to the wrong kind of slot, e.g.
_MirrorParentGroupAt: to a slot that isn’t a parent slot.

outOfMemoryError A primitive could not complete because its results would not fit in the existing
space

stackOverflowError The stack overflowed during execution of the primitive or program.

slotNameError Illegal slot name.

argumentCountError Wrong number of arguments.

unassignableSlotError This slot is not assignable.

lonelyAssignmentSlotError Assignment slot must have a corresponding data slot.

parallelTWAINSError Can not invoke TWAINS primitive (another process is already using it).

noProcessError This process does not exist.

noActivationError This method activation does not exist.

noReceiverError This activation has no receiver.

noParentSlot This activation has no lexical parent.

noSenderSlot This activation has no sender slot.

deadProxyError This proxy is dead and can not be used.

liveProxyError This proxy is live and can not be used to hold a proxy result.

wrongNoOfArgsError Wrong number of arguments was supplied with call of foreign function.

nullPointerError Foreign function returned null pointer.

nullCharError Can not pass byte vector containing null char to foreign function expecting a
string.

prematureEndOfInputError Premature end of input during parsing.

noDynamicLinkerError Primitive depends on dynamic linker which is not available in this system.

EPERM, ENOENT, ... These errors are returned by a UNIX primitive if a UNIX system call executed by
the primitive fails. The UNIX error codes are defined in/usr/include/sys/
errno.h; see this file for details on the roughly 90 different UNIX error codes.

The _ErrorMessage primitive, sent to an error string returned by any primitive, returns a more
descriptive version of the error message; this is especially useful for UNIX errors.

5.B.2  Available primitives

A complete list of primitives can be obtained by sendingprimitiveList to primitives. Doc-
umentation for a primitive (such as _Clone), can be obtained using at:, thus:

primitives at: ’_Clone’

A list of primitive names matching a pattern can be obtained thus:

primitives match: ’_Memory*’

Some points to note when browsing primitives:
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• Since strings are special kinds of byte vectors, primitives taking byte vectors as arguments
can usually take strings. The exception is that canonical strings cannot be passed to primi-
tives that modify the object.

• Integer arithmetic primitives take integer receivers and arguments; floating-point arithmetic
primitives take floating-point receivers and arguments.

• All comparison primitives return either true or false. Integer comparison primitives take in-
teger receivers and arguments; floating-point comparison primitives take floating-point re-
ceivers and arguments.

• The receiver of a mirror primitive must be a mirror (unless otherwise noted)
















