The SELF 4.0 Programmer’s Reference Manual

Ole Agesen
Lars Bak
Craig Chambers
Bay-Wel Chang
Uts Holzle
John Maloney
Randall B. Smith
David Ungar
Mario Wolczko

Copyright (c) 1995, Sun Microsystems, Inc. and Stanford University. All Rights Reserved.

Sun Microsystems, Inc
2550 Garcia Avenue
Mountain View, CA 94043 USA

RESTRICTED RIGHTSLEGEND: Use, duplication, or disclosure by the government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rightsin T echnical Data and Computer Software Clause at DF ARS
252.227-7013 (Oct. 1988) and FAR 52.227-19(c) (June 1987).

SOFTWARE LICENSE: The software described in this manual may be used internally, modified, copied and distrib-
uted to third parties, provided each copy of the software contains both the copyright notice set forth above and the dis-
claimer below.

DISCLAIMER: Sun Microsystems, Inc. makes no representations about the suitability of this software for any pur-
pose. It is provided to you "AS1S", without express or implied warranties of any kind. Sun Microsystems, Inc. dis-
claims all implied warranties of merchantability, fitness for a particular purpose and non-infringement of third party
rights. Sun Microsystems, Inc.'sliability for claims relating to the software shall be limited to the amount, if any of the
fees paid by you for the software. 1n no event will Sun Microsystems, Inc. be liable for any special, indirect, inciden-
tal, consequential or punitive damages in connection with or arising out of this license (including loss of profits, use,
data, or other economic advantage), however it arises, whether for breach of warranty or in tort, even if Sun Microsys-
tems, Inc. has been advised of the possibility of such damage.

Introduction

Table of Contents

Introduction 1
1.1 Overview Of the SELF SYSIEM.........ccooiseeiseesecsssesse st sessssssssssssssnns 1
0 0 I =S Y £ o 1
112 Thetranslalion PrOCESS.cccoiirireriresie ettt ebe et sb et sbe e et e b e se e s e s e e e e eneenes 2
L anguage Reference 3
2.1 ODJECES... ot 3
2 Y | = TP PP PSSRSO 3
225 W72 B T - Y o] o[ox T 4
213 TheassignmeNnt PriMitIVEcccoiiiirire ettt e s se e se e 4
214 ODJECISWIth COUR ..ottt st be s ebe e 5
2.1.9 Construction of ODJECt lITEralSccccvceieiies e e 7
2.2 SIOUAESCIILOIS. ..ottt 7
221 REAO-0NIY SIOIS...uiiitiiciiieeee bbb bbb 8
222 REAIMIITE SIOIS...c.eieeciiiresreeerer et 8
2.2.3 SlotscontaiNing MENOUS.........c.oiiiiiii e e e 9
W = 000 Lo (= 1
2.25 ANNOLELIONS......ceeuierieeieiiseeter ettt b e r et r e rnn e 1
2.3 EXPIESSIONS. ...ttt ees sttt 11
2.3 1 UNBIY MESSAOES. ... eeueeueeuerierieeresresttsresresseseessessessessess e e et seesesseasearesbesaearesreseennesenne e ennennenis 12
2.3.2 BiNAIY MESSAOESccveeeueeueeeetesterestestesteseestesteseessessesseseseesesseasestessessessessessessensessessesensnnes 13
2.3.3 K EYWOIT MESSAGES ... ueeuerueriertesterte st stesie et be st et e ee e e e e seeseeaesbeebesaesaesbesbeseessenbenseneeneennens 13
234 IMPliCIt-TECEIVEr MESSAPEScueiueeireeieriee ettt sttt sttt st e et a et bbbttt st nbe s 14
235 RESENIING MESSAGEScueeeeueerertiitististestestestestestesseeeseeseseesessessestesseseestesteseessensessensensnsennes 15
236 Message |00KUD SEMANTICScoiiiiirierie ettt et 15
237 MESSAYE SEN. ...ttt ettt b e bbbt a e e bbbt b et 16
2.3.8 Thelookup algorithm ... s 17
2.3.9 UNAIreCted RESENG......c.coiieieeiiirerieteeriris ettt bbbttt 17
P2 T 0 T 1 = ok =l S = o R 18
24 LeXiCal BlBMENES.........oo ettt 18
241 CRAIACLEN SEL...vviierieteeeeree ettt sttt bbb bbbt b b b e e e bt et e bt e bbb 18
F N 1o L= o1 1= £ 19
T T (= ATV o R 19
244 ATQUIMIENTS ...ttt ettt et e e e e e be e et eaeesee s aeeseeeaeesaeeaeesbeenbesbeenbesbeanbennnannes 19
245 OPEIALOISeeeeeeeiee ettt ettt r e et r et h e h e R e E e Rt E e e r e e e e 20
24.6 INUMDENS ...ttt e bbb bt rer e e n e 20
A 1 1 0T LTRSS 21
P T 0 111 11 TSR 22
Appendix 2.A GlOSSANY ...ttt 23

Appendix 2.B LEXICAl OVEIVIBW ...t 25

Introduction

Appendix 2.C....... SYNLAX OVEIVIEW ...t 26
Appendix 2.D BUIHT-TNTYPES ...t 28
The SELF World 29
31 WO OFganiZALION ..ot 30
311 TRELODDY ..ottt e b e bbbt ne e 30
312 NAMESANA PAINS.......oooctiiieiiceeie ettt sttt e s s saae s s bessanesbessnes 30
3.2 THE ROOLS Of BENAVIO ...ttt ettt enen e eeeeeen 31
I N B 1< = 18 | A =< 0 7= Y/ o SRR 31
3.2.2 TheRoot Traits: Traits Clonable and Traits Oddballccovveevvceeiciiiecee e 32
3.23 YDl 1O 32
3.3 Blocks, Booleans, and Control StTUCLUIES...........c.oooeeeeeeeeeeeeeeeeeeeeeeeeeeee e 32
3.3.1 Booleans and ConditioNalS..........ooeeiveiiiieiiecee et re s sae b s 33
I 17 W0 o o L F OO P PP S OO R PRSP 33
IR T = [0 o o L =R 34
R B @ 1 a1 gl =] FoTo L 2T< 7= /o 34
34 NUIMDEIS NGO THMIE....eeeeeeeeeeee ettt ettt ettt et st ee et et e s e e et eneseee et eneeesesneenaeens 35
341 RANUOM NUMIDEIS.....ceeiiiieie ettt ettt e et e s st e e e et e e st e e s sbe e s ssbaessesaesssabeessbenssaneesssaens 36
G I 7 I o 1T Y 36
35 COIIBCLIONS......ceeeeeeeeeee ettt ettt ettt et et ee e ee et et reesee et eneeseseeeneeeeseeneennanenes 36
351 INAEXADIE COlECHIONS......oeeeieeii ettt e et e e s e e e ba e s s ae e s sabnessbeessesreessaens 37
35.2 Strings, Characters, and Paragraphs..........ccoceveeeeiececsece et 37
3.5.3 Unordered SetS and DICLIONAIIES..........ccocviiieieeiiiiee et e e s s sae e s sebe e s senres s enees 38
354 Tree-Based SetSand DiCtiONAIES........ccooiviiieceeeiieee et e e e s e s sare s s bee s seaeee s saees 39
355 Listsand PriorityQUEUESccceverierierieiesieseeieee e e e sre e sre e stesnenae e see e eneeneeneens 39
3.5.6 Constructing and Concatenating CollECtioNSccceeveveeie e 40
3.6 P TS .ttt ettt ettt ettt ettt et ettt et et ettt et et et et ee et et et et ee et eeanens 40
3.7 VLI TTO S ettt e e ee e ee e es e e es e es s es s et s ee s et en e eeneseeeesenneeenneseeerenan 40
3.8 IMTESSA0ES. ...ttt 41
3.9 Processes and the PromML ...t ssesssssssssssssssssnns 42
310 FOreign ODJECES........coocveeeeiecieee ettt 42
BAL IO AN UNIX oottt ettt ettt e st et e et en s eseeen e etes et ee s eeneeeeneeaeeenenes 43
312 Other ODJECES........ oottt 44
3. 13 HOW tO DU tREWOIT. ...ttt e e 46
3.14 Creating thE WO ..ot e a e e saesaee e 46
3.15 How to usethe low-level interrupt faCilities.........cooovrriinrne e, 47
3.16 Using the textual dEDUGOES ..o e s 48

Appendix 3.A Glossary of USaful SEIECLONS............oriceeeesseieeeeee s 49

Introduction

A Guide to Programming Style 56
4.1 Behavioralism VersusS REfIECHION ... 56
4.2 ObjectsHave Many ROIES............ccooiieiiseeeeee et 57
421 Shared BENAVIOLcccovieiiiecireere e 57
422 One-of-akind Objects (OddDallS)cceiiiiriirieee e 57
423 Using Objects for Organi Zation...........cccceeerieiereniereseeseeseeseeeeese e sseseseeseesseseesesseesesseens 58
N 1 g 1T T @ o= £ 58
4.3 Naming and Printing ...t sessssssesssssssssssessssssans 58
431 How objectsare printed** needs updating **cccovrerererenienie s 59
432 How to make an OBJECT Printccoeiiiiiineie e e 59
44 How to RetUrn MUIIPIE VAIUES........cc. it 60
45 Substituting ValueS fOr BIOCKS.........cc.coiiuririniesecssse st 61
4.6 NIl CONSIAEIred NAUGNLYcoouiieeiiieeeee ettt 61
A7 HASN AN ..o 62
4.8 Equality, Identity, and Indistinguishability ..o, 62
Virtual Machine Reference 63
5.1 SEAtUP OPLIONS ...ttt 63
52 SySteM-triggered MESSAgES.ccomwurireereieeieeieessesssses st sttt sssssssssssas 63
53 Run-time message |00KUD EITOIS...........cccmieieieeeeise et 64
54 LOW-IEVEl EITON MESSAGES.......coovviicieieeeee et 64
55 AN EXBIMPIE.... ettt b et he b bt et st be bbbt e st e e e e e 65
5.6 LOOKUP rr OIS, oo 65
5.7 Programmer defiNE EITOIS........cccoiiice et e 65
5.8 PrIMITIVE BITONS. ...ttt sttt b et b e e b e et et e b sn s e 66
59 NONFECOVErahl € PrOCESS EITOISccviieeeectereete sttt sttt b s b e st st s beseene e 66
LT O = =1 (0] £ OSSO S TSR 66
511 Theinitial SELF WOITG........ccooooe st 67
512 OPtioN PIIMITIVES. ...ttt ettt sssssanes 71
513 Interfacing with other [aNQUAgES ... 72
5.13.1 Proxy and fCtPrOXY ObJECES.......couiiiiieieiieie et e 72
L3001 T2 1 11T Y oo o [S 73
5.13.3 Compiling and [inking glue COAEciveierecceecrr e 73
5.13.4 A smpleglue example: calling @ C fUNCLIONccooririiiiinene e 74
LT I O o 11 ST PR SOPSTPTORPRTPTPRPROON 76
L300 T TR 0 o {11 - TR 79
5.13.13 CONVEISION PAITS. ...ueiuiruerueaterteriestestesteseessesteseeseaeeeeaesseesessesaesbesaesaesbesbesbeseensenseseansensenseneans 81
5.13.16 A complete application using foreign fUNCLIONS...........coeoeriirinneneeereee e 87

Appendix 5.A The SYSEEM MONITOT ...t o1

Introduction

Appendix 5.B PHIMITIVES. ...ttt 94
Appendix 5.C....... Getting the optional SOUrCe files..........coocviieieiceseeeeee e, 97
References 98

Index 100

1 Introduction

1.1 Overview of the SELF System

This section contains an overview of the system and its implementation; it can be skipped if you
wish to get started as quickly as possible.

1.1.1 Thesystem

Although SELF runsas asingle U NIX T process, it really has two parts. the virtual machine (VM)
and the SELF world, the collection of SELF objects that are the SELF prototypes and programs:

SELF world

SELF virtual machine

Figurel The SELF system

The VM executes SELF programs specified by objectsin the S ELF world and provides a set of
primitives (which are methods written in C++) that can be invoked by SELF methods to carry out
basic operations like integer arithmetic, object copying, and 1/0. The SELF world distributed with
the VM isacollection of S ELF objects implementing various traitsand prototypes like cloning
traits and dictionaries. These objects can be used (or changed) to implement your own programs.

transporter
(SELF Source Code\ - ——
_/ RunScript primitive
disk file parser SELF Objects)
SELF h
(SELF Source Code\ - > eap
_/ read-eval-print loop or ui

keyboard

/ SELF Methods \ -~ i Compiled Method
\(objects with bytecodes)/ when a method | comprier (machine code)

SELF heap not in tigecgﬁgg cache Compiled code cache

Figure2 How SELF programs are compiled

Introduction Overview of the SELF System

1.1.2 Thetrangation process

SELF programs are translated to machine code in a two-stage process (see Figure 2). Code typed
in at the prompt, through the user interface, or read in from afile is parsed into &LF objects. Some
of these objects are data objects; others are methods. Methods have their own behavior which they
represent with bytecodes. The bytecodes are the instructions for avery simple virtual processor
that understands instructions like “ push receiver” or “send the ‘X’ message.” In fact, S ELF byte-
codes correspond much more closely to source code than, say , Smalltalk-80 bytecodes. (See
[CUL89] for alist of the SELF byte codes.) The rutsan & #tre of the virtual machineisto pretend
that these bytecodes are directly executed by the computer; the programmer can explore the SELF
world down to the bytecode level, but no further. This pretense ensures that the behavior of a SEELF
program can be understood by looking only at the SELF source code.

The second stage of trandation is the actual compilation of the bytecodes to machine code Thisis
how the “execution” of bytecodes isimplemented—it istotally invisible on the SELF level except
for side effects like execution speed and memory usage. The compilation takes place the first time
amessage is actually sent; thus, the first execution of a program will be slower than subsequent ex-
ecutions.

Actually, this explanation is not entirely accurate: the compiled method is specialized on the type of the receiver . If
the same message is later sent to areceiver of dif ferent type (e.g., afloat instead of an integer), a new compilation
takes place. Thistechniqueis called customization; see [CU89] for details. Also, the compiled methods are placed
into a cache from which they can be flushed for various reasons; therefore, they might be recompiled from time to
time. Furthermore, the current version of the compiler will recompile and reoptimize frequently used code, using in-
formation gathered at run-time as to how the code is being used; see [HCU91] for details.

Don't be misled by the term “compiled method” if you are familiar with Smalltalk: in Smalltalk terminology it de-
notes a method in its bytecode form, but in SELF it denotes the native machine code form. In Smalltalk there is only
one compiled method per source method, but in SELF there may be severa different compiled methods for the same
source method (because of customization).

2 Language Reference

This chapter specifies SELF's syntax and semantics. An early version of the syntax was presented
in the original S ELF paper by Ungar and Smith [US87]; this chapter incorporates subsequent
changes to the language. The presentation assumes a basic understanding of object-oriented con-

cepts.

The syntax is described using Extended Backus-Naur Form (EBNF). Terminal symbols appear in
Cour i er and are enclosed in single quotes; they should appear in code as written (not including
the single quotes). Non-terminal symbols are italicized. The following table describes the meta-
symbols:

META-SYMBOL FUNCTION DESCRIPTION

(and) grouping used to group syntactic constructions

[and] option encloses an optional construction

{and} repetition encloses a construction that may be repeated zero or
more times

| aternative separates alternative constructions

— production separates the |eft and right hand sides of a production

A glossary of terms used in this document can be found in Appendix A.

2.1 Objects

Objects are the fundamental entitiesin ELF; every entity in a SELF program is represented by one
or more objects. Even control is handled by objects: blocks (82.1.7) are SELF closures used to im-
plement user-defined control structures. An object is composed of a (possibly empty) set of slots
and, optionally, code (82.1.5). A dot isaname-value pair; dots contain references to other objects.
When a dot isfound during a message lookup (82.3.6) the object in the dlot is evaluated.

Although everything is an object in SELF, not all objects serve the same purpose; certain kinds of
objects occur frequently enough in specialized roles to merit distinct terminology and syntax. This
chapter introduces two kinds of objects, namely data objects (“plain” objects) and the two kinds of
objects with code, ordinary methods and block methods.

2.1.1 Syntax

Object literals are delimited by parentheses. Within the parentheses, an object description consists
of alist of slots delimited by vertical bars (‘| *), followed by the code to be executed when the ob-
ject isevaluated. For example:

The SELF World Objects

(| slotl. slot2 | "here is some code’ printLine)
Both the dot list and code are optional: “(||)’ and ‘()" each denote an empty objec:t.Jr

Block objects are written like other objects, except that square brackets (" [* and ‘] ') areused in
place of parentheses:

[| slotl. slot2 | "here is some code in a block’ printLine]

A dlot list consists of a (possibly empty) sequence of slot descriptors (82.2) separated by periods.
A period at the end of the slot list is optional .

The code for an object is a sequence of expressions (82.3) separated by periods. A trailing period
isoptional. Each expression consists of a series of message sends and literals. The last expression
in the code for an object may be preceded by the ‘~’ operator (82.1.8).

2.1.2 Data objects

Data objects are objects without code. Data objects can have any number of sots. For example, the
object () hasno dots(i.e, it'sempty) whiletheobject(| x = 17. y = 18 |)hastwo dots,
x andy.

X 17
slots <:
y 18

A data object returns itself when evaluated.

2.1.3 Theassignment primitive

A dot containing the assignment primitive is called an assignment slot (82.2.2). When an assign-
ment slot is evaluated, the argument to the message is stored in the corresponding data slot (82.2)
in the same object (the slot whose name is the assignment slot” s name minus the trailing colon),
and the receiver (82.3) isreturned as the result. (Note: this means that the value of an assignment
statement is the left-hand side of the assignment statement, not the right-hand side asit isin Small-
talk, C, and many other languages. Thisis a potential source of confusion for new SELF program-
mers.)

The SELF World Objects

2.1.4 Objectswith code

The feature that distinguishes amethod object from a data object is that it hascode, whereas a data
object does not. Evaluating a method object does not simply return the object itself, aswith smple
data objects; rather, its code is executed and the resulting value is returned.

2.1.5 Code

Code is a sequence of expressions (82.3). These expressions are evaluated in order, and the result-
ing values are discarded except for that of the final expression, whose val ue determines the result
of evaluating the code.

The actual arguments in a message send are evaluated from |eft to right before the message is sent.
For instance, in the expression:

1to: 5* i By: 2*j Do: [|:k | k print]

1 isevaluated first, then5 * i,then2 * j,andthen[|:k | k print].Finaly, theto: By: Do:
message is sent. The associativity and precedence of messagesis discussed in section 4.

2.1.6 Methods

Ordinary methods (or simply “methods’) are methods that are not embedded in other code. A
method can have argument slots (82.2.3) and/or local slots. An ordinary method always has an im-
plicit parent (82.2.4) ar gument slot named sel f. Ordinary methods are S ELF's equivalent of
Smalltalk’s methods.

If aglot contains a method, the following steps are performed when the dlot is evaluated as the re-
sult of a message send:

» The method object is cloned, creating anew method activation object containing slots for
the method’ s arguments and locals.

* Theclone'ssel f parent slot isinitialized to the receiver of the message.

* Theclone sargument dlots, if any, areinitialized to the values of the corresponding actual
arguments.

» The code of the method is executed in the context of this new activation object.

For example, consider themethod (| :arg | arg * arg):
‘self*
lot
code ————» arg * arg

This method has an argument slot ar g and returns the square of its argument.

The SELF World Objects

2.1.7 Blocks

Blocks are SELF closures; they are used to implement user-defined control structures. A block lit-

eral (delimited by square brackets) defines two objects: the block method object, containing the

block’s code, and an enclosing block data object. The block data object contains a parent pointer

(pointing to the object containing the shared behavior for block objects) and a slot containing the

block method object. Unlike an ordinary method object, the block method object does not contain
asel f dot. Instead, it has an anonymous parent slot that isinitialized to point to the activation ob-
ject for the lexically enclosing block or method. Asaresult, implicit-receiver messages (82.3.4)

sent within a block method are lexically scoped. The block method object’s anonymous parent slot

isinvisible at the SELF level and cannot be accessed explicitly.

For example, theblock[3 + 4] looks like: T

parent* It

enclosing method’s
activation object

(lexicalParent) (parent*) | .

value 3+4
—~— N~
block block method

The block method’s selector is based on the number of aguments. If the block takes no aguments,
the selector isval ue. If it takes one argument, the selector isval ue: . If it takes two arguments,
the selector isval ue: W t h: , for three the selector isval ue: Wt h: Wt h: , and for more the se-
lector isjust extended by enough W t h: ’s to match the number of block arguments.

Block evaluation has two phases. In the first phase, ablock object is created because the block is
evaluated (e.g., it isused as an ar gument to a message send). The block is cloned and given a
pointer to the activation record for its lexically enclosing scope, the current activation record. In
the second phase, the block’s method is evaluated as a result of sending the block the appropriate
variant of the val ue message. The block method is then cloned, the ar gument slots of the clone
arefilled in, the anonymous parent slot of the clone isinitialized using the scope pointer deter-
mined in phase one, and, finally, the block’s code is executed.

It isan error to evaluate a block method after the activation record for its lexically enclosing scope
has returned. Such a block is called a non-lifo block because returning from it would violate the
last-in, first-out semantics of activation object invocation.

Thisrestriction is made primarily to allow activation records to be allocated from a stack. A future
release of SELF may relax thisrestriction, at least for blocks that do not access variablesin
enclosing scopes.

The SELF World Slot descriptors

2.1.8 Returns

A returnis denoted by preceding an expression by the* A’ operator. A return causes the value of
the given expression to be returned as the result of evaluating the method or block. Only the last
expression in an object may be areturn.

The presence or absence of the *” operator does not effect the behavior of ordinary methods, since
an ordinary method always returns the value of its final expression anyway. In ablock, however, a
return causes control to be returned from the ordinary method containing that block, immediately
terminating that method'’s activation, the block’s activation, and al activations in between. Such a
return is called a non-local return, since it may “return through” anumber of activations. The re-
sult of the ordinary method's evaluation is the value returned by the non-local return. For example,
in the following method:

assertPositive: x = (
X >0 ifTrue: [~ "ok’].
error: 'non-positive x')

theer r or: message will not be sent if X is positive because the non-local return of ‘ok’ causes the
assert Positive: method to return immediately.

2.1.9 Construction of object literals

Object literals are constructed during parsing—the parser converts objects in textual form into real
SELF objects. An object literal is constructed as follows:

» First, the dot initializers of every ot are evaluated from left to right. If adot initializer con-
tains another object literal, thisliteral is constructed before the initializer containing it is
evaluated. If theinitializer is an expression, it is evaluated in the context of the lobby.

» Second, the object is created, and its slots are initialized with the results of the evaluations
performed in the first step.

Slot initializers are not evaluated in the lexical context, since none exists at parse time; they are
evaluated in the context of an object known asthel obby. That is, the initializers are evaluated as
if they were the code of amethod in aslot of the | obby. This two-phase object construction pro-
cessimpliesthat slot initializers may not refer to any other slots within the constructed object (as
with Scheme's| et * and | et r ec forms) and, more generally, that aslot initializer may not refer
to any textually enclosing object literal.

2.2 Slot descriptors

An object can have any number of slots. Slots can contain data (data slots) or methods. Some slots
have special roles. argument slots are filled in with the actual ar guments during a message send
(82.3.3), and parent sots specify inheritance relationships (82.3.8).

A dslot descriptor consists of an optional privacy specification, followed by the slot name and an
optional initializer.

The SELF World Slot descriptors

2.2.1 Read-only dots

A slot name followed by an equals sign (‘=") and an expression represents aread-only ot initial-
ized to the result of evaluating the expression in the root context.

For example, a constant point might be defined as:

(| arent* = traits point.
+ 4.

I =

n
3
5

< X ©

|)

The resulting point contains three initialized read-only slots:

point traits

parent* .
x
y

2.2.2 Read/write dots

There is no separate assignment operation in SELF. Instead, assignments to data slots are message
sends that invoke the assignment primitive. For example, adata slot x isassignable if and only if

thereisadot in the same object with the same name appended with a colon (in this casex:), con-
taining the assignment primitive. Therefore, assigning 17 to slot x consists of sending the message
x: 17. Sincethisisindistinguishable from a message send that invokes a method, clients do not

need to know if x and x: comprise data slot accesses or method invocations.

An identifier followed by aleft arrow (the characters‘ <’ and ‘-’ concatenated to form * <- ') and
an expression represents an initialized read/write variable (assignable data slot). The object will
contain both a data slot of that name and a corresponding assignment slot whose name is obtained
by appending a colon to the data slot name. The initializing expression is evaluated in the root con-
text and the result stored into the data slot at parse time.

For example, an initialized mutable point might be defined as:

(| parent* = traits point.
X <- 3 + 4.
y <- 5.

|)

The SELF World Slot descriptors

producing an object with two data slots (x andy) and two assignment slots (x: andy:) containing
the assignment primitive (depicted with -z—):Jr

point traits

An identifier by itself specifies an assignable data sot initialized to nil.* Thus, the slot declaration
x isashorthand notation for x <- nil .

For example, a simple mutable point might be defined as:

producing:

2.2.3 Slots containing methods

If theinitializing expression is an object literal with code, that object is stored into the slotwithout
evaluating the code. This allows a slot to be initialized to a method by storing the method itself,
rather than its result, in the slot.” Methods may only be stored in read-only slots. A method auto-
matically receives a parent argument slot named self. For example, a point addition method can be
written as:

€1
|)

+ = (] rarg | (clone x: x + arg x) y: y +argy).

The SELF World Slot descriptors

producing:

:self*

| + | :I_> :arg

(clone x: x + arg X)
y:yt+argy

A slot name beginning with a colon indicates an argument slot. The prefixed colon is not part of
the slot name and is ignored when matching the name against a message. Ar gument slots are al-
ways read-only, and no initializer may be specified for them. As a syntactic convenience, the agu-
ment name may also be written immediately after the slot name (without the prefixed colon),
thereby implicitly declaring the argument slot. Thus, the following yields exactly the same object
as above:

€1
|)

The + dot above isabinary slot (§2.3.2), taking one argument and having a name that consists of
operator symbols. Slotslike x or y in apoint object are unary slots (82.3.1), which take no argu-
ments and have simple identifiers for names. In addition, there are keyword slots (§2.3.3), which
handle messages that require one or more arguments. A keyword slot name is a sequence of iden-
tifiers, each followed by a colon.

+ arg = ((clone x: x +arg xX) y: y +argy).

The arguments in keyword methods are handled analogously to those in binary methods: each co-
lon-terminated identifier in a keyword slot name requires a corresponding agument slot in the key-
word method object, and the ar gument slots may be specified either all in the method or all
interspersed with the selector parts.

For example:

€1

ifTrue: False: = (| :trueBlock. :falseBlock |
trueBl ock val ue).

i f True: trueBl ock Fal se: fal seBlock =
(trueBlock val ue).

|)

produce identical objects.

10

The SELF World Expressions

2.2.4 Parent dots

A unary slot name followed by an asterisk denotes aparent slot. The trailing asterisk is not part of
the slot name and is ignored when matching the name against a message. Except for their special

meaning during the message |ookup process (82.3.8), parent slots are exactly like normal unary

dlots; in particular, they may be assignable, allowing dynamic inheritance. Argument slots cannot
be parent dots.

2.2.5 Annotations

In order to provide extrainformation for the programming environment, S ELF supports annota-
tions on either whole objects or individual slots. Although any object can be an annotation, the
SELF syntax only supports the textual definition of string annotations. In order to annotate an ob-
ject, use this syntax:

(| {} ='this object has one slot’ snort = 17. |) }

In order to annotate a group of slots, surround them with braces and insert the annotation after the
opening brace:

€1
{ ’Category: accessing’
getOne = (...).
get Another = (...).
}

anUnannot at edSl| ot .

|)

Annotations may nest; if so the Virtual Machine concatenates the annotations strings and inserts a
separator character (16r7f).

2.3 Expressions

Expressionsin SELF are messages sent to some object, the receiver. SELF message syntax is sim-
ilar to Smalltalk’s. SELF provides three basic kinds of messages. unary messages, binary messag-
es, and keyword messages. Each has its own syntax, associativity , and precedence. Each type of
message can be sent either to an explicit or implicit receiver.

Productions:¥

11

The SELF World

Expressions

expression —

constant

unary-message

unary-send

binary-message

keyword-message

keyword-send

receiver

resend

The table below summarizes SELF s message syntax rules:

—
—
—
—
binary-send —
—
—
—
—

constant | unary-message | binary-message | keyword-message
| ‘(expression ‘)’

sel f | number | string | object

receiver unary-send | resend ‘. * unary-send

identifier

receiver binary-send |resend ‘. ’ binary-send

operator expression

receiver keyword-send |resend ‘.’ keyword-send

small-keyword expression { cap-keyword expression }

[expression |

resend | identifier

MESSAGE | ARGUMENTS | PRECEDENCE | ASSOCIATIVITY SYNTAX
unary 0 highest none [receiver] identifier
binary 1 medium none or [receiver] operator expression
left-to-right *
keyword 1 lowest right-to-left [receiver] small-keyword expression
{ cap-keyword expression }

* Heterogeneous binary messages have no associativity; homogeneous binary messages associate left-to-right.

Parentheses can be used to explicitly specify order of evaluation.

2.3.1 Unary messages

A unary message does not specify any aguments. It is written as an identifier following the receiv-

er.

Examples of unary messages sent to explicit receivers:

Associativity. Unary messages compose from left to right. An expression to print 5 factorial, for

17 print
5 factori al

example, iswritten:

5 factori al

pri nt

12

The SELF World Expressions

and interpreted as:

(5 factorial) print
Precedence. Unary messages have higher precedence than binary messages and keyword
messages.
2.3.2 Binary messages
A binary message has areceiver and a single argument, separated by a binary operator.
Examples of binary messages:

3

+ 4
7 <->

8

Associativity. Binary messages have no associativity, except between identical operators (which
associate from left to right). For example,

3+4+7
isinterpreted as

(3 +4) +7
But

3+4*7

isillegal: the associativity must be made explicit by writing either
(3 +4) * 7 o0r 3+ (4*T7).

Precedence. The precedence of binary messages is lower than unary messages but higher than key-
word messages. All binary messages have the same precedence. For example,

3 factorial + pi sine
isinterpreted as

(3 factorial) + (pi sine)

2.3.3 Keyword messages

A keyword message has areceiver and one or more arguments. It is written as areceiver followed
by a sequence of one or more keyword-argument pairs. The first keyword must begin with alower
case letter or underscore (*_"); subsequent keywords must be capitalized. An initial underscore de-
notes that the operation isa primitive A keyword message consists of the longest possible se-
guence of such keyword-ar gument pairs; the message selector is the concatenation of the

13

The SELF World Expressions

keywords forming the message. M essage selectors beginning with an underscore are reserved for
primitives (82.3.7).

Example:
5 mn: 4 Max: 7

isthe single message i n: Max: sent to 5 with arguments 4 and 7, whereas
5mn: 4 max: 7

involves two messages: first the message max: sent to 4 and taking 7 asits argument, and then the
message i n: sent to 5, taking theresult of (4 nmax: 7) asitsargument.

Associativity. Keyword messages associate from right to left, so

5mn: 6 mn 7 Max: 8 Max: 9 min: 10 Max: 11
isinterpreted as

5mn: (6 mn: 7 Max: 8 Max: (9 mn: 10 Max: 11))

The association order and capitalization requirements are intended to reduce the number of paren-
theses necessary in SELF code. For example, taking the minimum of two slotsmand n and storing
theresult into adatasloti may be written as

i: mmn: n

Precedence. Keyword messages have the lowest precedence. For example,
i: b factorial + pi sine

isinterpreted as

i: ((5 factorial) + (pi sine))

2.3.4 Implicit-receiver messages

Unary, binary, and keyword messages are frequently written without an explicit receiver . Such
messages use the current receiver (sel f) asthe implied receiver. The method lookup, however,
begins at the current activation object rather than the current receiver (see 82.1.4 for details on ac-
tivation objects). Thus, a message sent explicitly to sel f isnot equivalent to an implicit-receiver
send because the former won't search local slots before searching the receiver. Explicitly sending
messagesto sel f isconsidered bad style.

Examples:
factori al (implicit-receiver unary message)
+ 3 (implicit-receiver binary message)

14

The SELF World Expressions

max: 5 (implicit-receiver keyword message)
1 + power: 3 (parsedas1 + (power: 3))

Accessesto dots of the receiver (local or inherited) are also achieved by implicit message sendsto
sel f . For an assignable data slot namedt , the messaget returnsthe contents, andt: 17 puts17
into the slot.

2.3.5 Resending messages

A resend allows an overridding method to invoke the overridden method. Directed resends allow
ambiguities among overridden methods to be resolved by constraining the lookup to search asin-
gle parent slot. Both resends and directed resends may change the name of the message being sent
from the name of the current method, and may pass different arguments than the arguments passed
to the current method. The receiver of aresend or a directed resend must be the implicit receiver.

Intuitively, resend is similar to Smalltalk’s super send and CLOS' cal | - next - net hod.

A resend is written as an implicit-receiver message with the reserved word r esend, a period, and
the message name. No whitespace may separate r esend, the period, and the message name.

Examples:
resend. di spl ay
resend. + 5

resend. mn: 17 Max: 23

A directed resend constrains the resend through a specified parent. It is written similar to a normal
resend, but replacesr esend with the name of the parent slot through which the resend is directed.

Examples:

| i st Parent. hei ght
intParent.mn: 17 Max: 23

Only implicit-receiver messages may be delegated viaaresend or adirected resend.”

2.3.6 Message lookup semantics

This section describes the semantics of message lookups in SELF. In addition to an informal tex-
tual description, the lookup semantics are presented in pseudo-code using the following notation:

s.name The name of dlot s.
s.contents The object contained in slot s.
s.isParent Trueiff sisaparent dlot.

15

The SELF World Expressions

{s«e obj | pred(s)} The set of al dots of object obj that satisfy predicate pred.
| S| The cardinality of set S

The message sending semantics are decomposed into the following functions:

send(rec, sel, args) The message send function (82.3.7).

lookup(obyj, rec, sd, V) The lookup algorithm (82.3.8).

undirected resend(...) The undirected message resend function (82.3.9).

directed_resend(...) The directed message resend function (82.3.9).

eval(rec, M, args) The dlot evaluation function as described informally throughout
§2.1.

2.3.7 Message send

There are two kinds of message sends: a primitive send has a selector beginning with an under-
score (‘') and calls the corresponding primitive operation. Primitives are predefined functions
provided by the implementation. A normal send does alookup to obtain the tar get slot; if the
lookup was successful, the dot is subsequently evaluated. If the slot contains a data object, then the
data object is simply returned. If the slot contains the assignment primitive, the ar gument of the
message is stored in the corresponding data lot. Finally, if the slot contains a method, an activation
is created and run as described in §2.1.6.

If the lookup fails, the lookup error is handled in an implementation-defined manner; typically, a
message indicating the type of error is sent to the object which could not handle the message.

The function send(rec, sel, args) is defined as follows:

I nput: rec, thereceiver of the message
sel, the message selector
args, theactual arguments

Output: res, theresult object
Algorithm:
if begins with_underscore(sel)
then invoke primitive(rec, sel, args) “primitive call”
else M & lookup(rec, sel, &) “do the lookup”
case

|M|=0: error: message not understood
|[M|=1: res¢ eval(rec, M, args) “see §2.1”
|M|>1: error: ambiguous message send
end
end
returnres

16

The SELF World Expressions

2.3.8 Thelookup algorithm

The lookup algorithm recursively traverses the inheritance graph, which can be an arbitrary graph

(including cyclic graphs). No object is searched twice along any single path. The search beginsin

the object itself and then continues to search every parent. Parent slots are not evaluated during the
lookup. That is, if aparent slot contains an object with code, the code will not be executed; the ob-
ject will merely be searched for matching slots.

The function lookup(obyj, sel, V) is defined as follows:

Input: obj, theobject being searched for matching slots
sel, the message selector
Vv, the set of objects already visited along this path

Output: M, the set of matching slots

Algorithm:
if obj = V
then M ¢ &% “cycle detection”
else M ¢ {s< obj | sname = sel} “try local slots”
if M =tthen M « parent_lookup(obj, sel, V) end “try parent slots’
end
return M

Where parent_|lookup(obyj, sel, V) is defined as follows:

P ¢ {s«< obj | sisParent} “al parents’

M & 1_} lookup(s.contents, sel, Vi t{obj}) “recursively search parents’
s= P

return M

2.3.9 Undirected Resend

An undirected resend ignores the sending method holder (the object containing the currently run-
ning method) and continues with its parents.

The function undirected resend(rec, smh, sel, args) is defined as follows:

I nput: rec, thereceiver of the message
smh, the sending method holder
sel, the message selector
args, theactual arguments

Output: res, theresult object
Algorithm:
M ¢ parent_lookup(smh, sel, i) “do the lookup”
case
|M

0: error: message not understood
1

|
| M| res «— eval(rec, M, args) “see §2.1"

17

The SELF World Lexical elements

|[M|>1: error: ambiguous message send
end
returnres

2.3.10 Directed Resend
A directed resend looks only in one slot in the sending method holder.

The function directed resend(rec, smh, del, sel, args) is defined as follows:

Input: rec, thereceiver of the message
smh, the sending method holder
del, thename of the delegatee
sel, the message selector
args, theactual arguments

Output: res, theresult object

Algorithm:
D ¢« {s« smh|sname=del} “find delegatee’
if I D|=0 then error: missing delegatee “one or none”
M & lookup(smh.del, sel, &) “do the lookup”
case

|[M|=0: error: message not understood
[M]|=1 res« eval(rec, M, args) “see §2.1”
|[M|>1: error: ambiguous message send

end

returnres

2.4 Lexical dements

This chapter describes the lexical structure of S ELF programs—how sequences of charactersin
SELF source code are grouped into lexical tokens. In contrast to syntactic elements described by
productionsin the rest of this document, the elements of lexical EBNF productions may not be sep-
arated by whitespace, i.e. there may not be whitespace within alexical token. T okens are formed
from the longest sequence of characters possible. Whitespace may separate any two tokens and
must separate tokens that would be treated as one token otherwise.

2.4.1 Character set

SELF programs are written using the following characters:

» Letters. The fifty-two upper and lower case letters:
ABCDEFGHIIKLMNOPQRSTUVWXY Zabcdefghijklmnopgrstuvwxyz

» Digits. The ten numeric digits: 0123456789

18

The SELF World Lexical elements

» \Whitespace. The formatting characters. space, horizontal tab (ASCII HT), newline (NL),
carriage return (CR), vertical tab (VT), backspace (BS), and form feed (FF). (Comments are
also treated as whitespace.)

» Graphic characters. The 32 non-alphanumeric characters:
| @H#SYNE ™ ()_-+=\~{}[]:" <>,

2.4.2 ldentifiers

Anidentifier isasequence of letters, digits, and underscores (‘') beginning with alowercase letter
or an underscore. Case is significant: apoi nt isnot the same as aPoi nt .

Productions;

small-letter — ‘ajl‘n|..|'z

cap-letter — ‘A |'B"|...|'Z

letter — small-letter | cap-letter

identifier — (small-letter |) {letter | digit|*_'}
Examples: i _Int Add cl oud9 m a_poi nt

Thetwo identifierssel f and r esend are reserved. |dentifiers beginning with underscores are re-
served for primitives.

2.4.3 Keywords

Keywords are used as slot names and as message names. They consist of an identifier or a capital-
ized identifier followed by acolon (*:).

Productions:
small-keyword — identifier ‘.’

cap-keyword — cap-letter {letter | digit|* '} '
Examples: at: Put: _Int Add:
2.4.4 Arguments

A colon followed by an identifier denotes an argument slot name.

Production:

arg-name — ‘7 identifier

Example: : nane

19

The SELF World Lexical elements

2.4.5 Operators

An operator consists of a sequence of one or more of the following characters:
I @# $ %™ &* - + =~/ 2<>, ;| “\

Two sequences are reserved and are not operators:

| AN

Productions;

op-char = U@ IS W R]
S Y
operator — op-char {op-char}

Examples. + - && || <-> %# @"

2.4.6 Numbers

Integer literals are written as a sequence of digits, optionally prefixed with a minus sign and/or a
base.” No whitespace is allowed between a minus sign and the digit sequence.i Real constants may
be either written in fixed-point or exponential form.

Integers may be written using bases from 2 to 36. For bases greater than ten, the characters* a’
through ‘'z’ (case insensitive) represent digit values 10 through 35. The default base is decimal. A
non-decimal number is prefixed by its base value, specified as a decimal number followed by either
‘r'or'R.

Real numbers may be written in decimal only. The exponent of afloating-point format number in-
dicates multiplication of the mantissa by 10 raised to the exponent power; i.e.,

nnNnEddd = nnnn x 104dd

A number with adigit that is not appropriate for the base will cause alexical error, aswill an inte-
ger constant that istoo large to be represented. If the absolute value of areal constant istoo large
or too small to be represented, the value of the constant will be L infinity or zero, respectively.

Productions;
number — [-] (integer | real)

integer — [base] general-digit { general-digit}

20

The SELF World Lexical elements

real — fixed-point | float

fixed-point — decimal ‘.’ decimal

float — decimal [*." decimal | (‘€' |'E’) [+ |‘-"] decimal
general-digit — digit | letter

decimal — digit {digit}

base — decimal (‘'r' |'R’)

Examples: 123 16r27fe 1272. 34e+15 1e10

2.4.7 Strings

String constants are enclosed in single quotes (" ’). With the exception of single quotes and escape
sequences introduced by a backslash (* \), al characters (including formatting characters like
newline and carriage return) lying between the delimiting single quotes are included in the string!

To alow single quotes to appear in a string and to alow non-printing control charactersin astring
to be indicated more visibly, SELF provides C-like escape sequences:

\'t tab \'b backspace \'n newline

\f formfeed \'r cariagereturn \'v vertical tab
\a aert(bel) \' O null character \'\ backslash

\" singlequote \'" double quote \'? question mark

A backslash followed by an ‘x’, ‘d’, or ‘o’ specifies the character with the corresponding numeric
encoding in the ASCII character set:

\ xnn hexadecimal escape
\ dnnn decimal escape
\ onnn octal escape

There must be exactly two hexadecimal digits for hexadecimal character escapes, and exactly three
digitsfor decimal and octal character escapes. Illegal hexadecimal, decimal, and octal numbers, as
well as character escapes specifying ASCII values greater than 255 will cause alexical error.
For example, the following characters all denote the carriage return character (ASCII code 13):

\r \ x0d \ d013 \ 0015

A long string may be broken into multiple lines by preceding each newline with a backslash. Such
escaped newlines are ignored during formation of the string constant.

21

The SELF World Lexical elements

A backslash followed by any other character than those listed above will cause alexical error.

Productions;

string — 7 { normal-char | escape-char } '’
normal-char — any character except '\ " and "’
escape-char — VAR AR VT N v N0 N

‘\' ?” | numeric-escape

numeric-escape — ‘\ x’ general-digit general-digit | (‘\d’ |‘\ o’) digit digit digit

2.4.8 Comments

Comments are delimited by double quotes (*" *). Double quotes may not themselves be embedded
in the body of a comment. All characters (including formatting characters like newline and car-
riage return) are part of the body of a comment.

Productions;

comment — " { comment-char } ‘"

comment-char — any character except ‘™

Example: "this is a comment”

22

The SELF World Glossary

Appendix 2.A Glossary

A dlot isaname-value pair. The value of adlot isoften called its contents.

An object is composed of a (possibly empty) set of slots and, optionally, a series of expressions
called code. The SELF implementation provides objects with indexable slots (vectors) via a set
of primitives.

A data object is an object without code.

A data slot isaslot holding a data object. An assignment slot is a slot containing the
assignment primitive. An assignable data slot is adata slot for which there is a corresponding
assignment slot whose name consists of the data slot’ s name followed by a colon. When an
assignment slot is evaluated its argument is stored in the corresponding data slot.

An ordinary method (or simply method) is an object with code and is stored as the contents of a
slot. The method’ s name (also called its selector) is the name of the slot in which it is stored.

A block is an object representing alexically-scoped closure (similar to a Smalltalk block).

A block method is the method that is executed when ablock is evaluated by sending it val ue,
val ue:, val ue: Wt h:, etc. A block method is a special kind of method that is evaluated
within the scope of its method and any lexically enclosing blocks.

An activation object records the state of an executing method or block method. It is a clone of
the method prototype used to store the method’ s arguments and local slots during execution.
There are two kinds of activation objects. ordinary method activation objects (or simply meth-
od activation objects) and block method activation objects.

A non-lifo block is a block that is evaluated after the activation of its lexically enclosing block
or method has returned. This resultsin an error in the current implementation.

A non-local return isareturn from a method activation resulting from performing areturn (i.e.,
evaluating an expression preceded by the ‘*’ operator) from within alexically enclosed block.
A non-local return forces returns from all activations between the method activation and the
activation of the block performing the return.

The method holder of a method is the object containing the slot holding that method.
The sending method holder of a message is the method holder of the method that sent it.

A message is arequest to an object to perform some operation. The object to which the request
issent is called thereceiver. A message send is the action of sending a message to areceiver.

A primitive send is a message handled by invoking a primitive, a predefined function provided
by the SELF implementation.

Messages that do not have an explicit receiver are known as implicit-receiver messages The
receiver isboundtosel f .

A unary message is amessage consisting of asingle identifier sent to areceiver. A binary mes-
sage is amessage consisting of an operator and a single argument sent to areceiver. Akeyword
message is a message consisting of one or more identifiers with trailing colons, each followed
by an argument, sent to areceiver.

23

The SELF World Glossary

« Unary, binary, and keyword slots are slots with selectors that match unary, binary, and key-
word messages, respectively.

* Anargument slot isaslot in amethod filled in with a value when the method is invoked.

» Message lookup is the process by which objects determine how to respond to a message (which
dot to evaluate), by searching objects for slots matching the message.

* |Inheritance is the mechanism by which message |ookup searches objects for slots when the re-
ceiver’'s dots are exhausted. An object’s parent slots contain objects that it inherits from.

» Dynamic inheritance is the modification of object behavior by setting an assignable parent slot.

» A resend allows a method to invoke the method that the first method (the one that invokes the
resend) is overriding. A directed resend constrains the lookup to search a single parent slot.

» Cloning isthe primitive operation returning an exact shallow copy (a clone) of an object, i.e. a
new object containing exactly the same slots and code as the original object.

» A prototypeisan object that is used as atemplate from which new objects are cloned.

» A traitsobject is aparent object containing shared behavior, playing arole somewhat similar
to aclassin aclass-based system. Any SELF implementation is required to provide traits ob-
jectsfor integers, floats, strings, and blocks (i.e. one object which isthe parent of all integers,
another object for floats, etc.).

» The root context is the object that provides the context (i.e., set of bindings) in which slot
initializers are evaluated. This object is known as the lobby. During slot initialization, sel f is
bound to the lobby. The lobby is also the sending method holder for any sendsin the initializ-
ing expression.

* Nil isthe object used to initialize slots without explicit initializers. It isintended to indicate
“not auseful object.” This object is provided by the SELF implementation.

24

The SELF World Lexical overview

Appendix 2.B Lexical overview

small-letter — al'n|..|'z

cap-letter — ‘A|'B'|..|'Z

letter — small-letter | cap-letter

identifier — (small-letter | ‘") {letter | digit|‘_'}

small-keyword — identifier

cap-keyword — cap-letter {letter | digit|* '} ‘"~

argument-name — U identifier

op-char S U@ IHE IS W N]
SN I B R A R B\

operator — op-char {op-char}

number — [‘-] (integer | real)

integer — [base] general-digit { general-digit}

real — fixed-point | float

fixed-point — decimal ‘. decimal

float — decimal [*. decimal | (‘e |'E’) [+ |*-'] decimal

general-digit — digit | letter

decimal — digit {digit}

base — decimal (‘'r' |'R’)

string — "7 { normal-char | escape-char } ‘'’

normal-char — any character except '\’ and *’’

escape-char — NN N VET e N v [N T |
‘\' ?” | numeric-escape

numeric-escape — ‘\'x’ general-digit general-digit | (‘\d’ |‘\ o’) digit digit digit

comment — " { comment-char } ‘"

comment-char — any character but ‘"’

25

The SELF World

Syntax overview

Appendix 2.C Syntax overview'

expression

constant
unary-message
unary-send
binary-message
binary-send
keyword-message
keyword-send
receiver

resend

object
regular-object
block

slot-list
annotated-slot-list
unannotated-gl ot-list
code

slot

arg-sot

data-slot

unary-slot

binary-slot

—

L e A A

L

constant | unary-message | binary-message | keyword-message
| ‘(" expression'’)’

sel f | number | string | object

receiver unary-send [resend ‘. ’ unary-send
identifier

receiver binary-send | resend ‘. ’ binary-send
operator expression

receiver keyword-send | resend ‘.’ keyword-send
small-keyword expression { cap-keyword expression }
[expression |

resend | identifier

regular-object | block

‘CLTICY = string] slot-list '] [code] ‘)’
‘1"[‘] dot-list ‘| "][code] ‘]’

{ unannotated-dlot-list | annotated-slot-list }

“{" string dlot-list ‘}’

{dot*.'}dot[*."]

{expression’. '} [~] expression[‘.’]
arg-slot | data-dlot | binary-slot | keyword-slot
argument-name

slot-name
| Slot-name ‘<-* expression
| slot-name ‘=" expression

slot-name ‘=" regular-object

operator ‘=" regular-object
| operator [identifier] ‘=" regular-object

26

The SELF World Syntax overview

keyword-slot — small-keyword { cap-keyword} ‘=" regular-object
| small-keyword identifier { cap-keyword identifier}
‘=" regular-object

slot-name — identifier | parent-name

parent-name — identifier **’

27

The SELF World Built-in types

Appendix 2.D Built-in types

There are a small number of built-in types that are directly supported through primitives and syn-
tax:

Integers and floats are provided with primitives for performing arithmetic operations, comparisons
etc.

Srings have a byte vector part for storing the characters. Specia string primitives are provided.

Blocks are objects which combine code with an environment link. Used for control structures, they
are described in section [2.1.7].

In addition, there are a number of VM-supported types described in the sectionsonthe S ELF
World and the VM reference manual, such as mirrors, processes, vectors, proxies and profilers.

28

The SELF World

3 The SELF World

The default SELF world is a set of useful objects, including objects that can be used in application
programs (e.g., integers, strings, and collections), objects that support the programming environ-
ment (e.g., the debugger), and objects that ssimply are used to organize the other objects. This doc-
ument describes how this world is organized, focusing primarily on those objects meant for usein
SELF programs. It does not discuss the objects used to implement system facilities—for example,
there is no discussion of the objects used to implement the graphical user interface—nor does it
discuss how to use programming support objects such as the command history object; such tools
are described in The SELF User’'s Manual.

The reader is assumed to be acquainted with the SELF language, the use of multiple inheritance,
the use of traits objects and prototype objects, and the organizing principles of the SELF world as
discussed in [UCC91].

29

The SELF World World Organization

3.1 World Organization

3.1.1 TheLobby

The lobby object is thus named because it is where objects enter the S ELF world. For example,
when a script that creates a new object is read into the system, all expressionsin that script are
evaluated in the context of the lobby. That is, the lobby isthe receiver of all messages sent to “self”
by expressions in the script. To refer to some existing object in a script, the object must be acces-
sible by sending a message to the lobby. For example, the expression:

_AddSlots: (| newObject = (| entries < list copy ... |) |)

requires that the message | i st be understood by the lobby (the implicit receiver of the message)
so that theent ri es slot of the new object can be initialized. The lobby slotst rai t s, gl obal s,
and m xi ns arethe roots of the object namespaces accessible from the lobby. The organization of
these namespaces is described in the next section. The slot | obby allows the lobby itself to be re-
ferred by name

The lobby also has a number of other functions: it isthe location of the default behavior inherited
by most objects in the system (slot def aul t Behavi or).

3.1.2 Names and Paths

For convenience, the lobby’s namespace is broken into three pieces, implemented as separate ob-
jects rooted at the lobby:

o traits objects that encapsulate shared behavior. Typically, each prototype object
has an associated traits object of the same name that describes the shared
part of its behavior.

* globals prototypical objects and one-of-a-kind objects (“oddballs’)
* Mixins small, parentless bundles of behavior designed to be “mixed into” some
other object

Each of these namespace objects is categorized to aid navigation.

For example, to find the parent of the prototype list object, one could start with the gl obal s slot
of the lobby, then get the | i st dlot of that object, and then the par ent slot of the list. The se-

guence of slot names, gl obal s |i st parent iscalleda path and constitutesthe list parent’s
full name. Parent slots can be omitted from an object’s full name, since the slotsin a parent are vis-
iblein the child viainheritance. A path with parent slots omitted forms the short name for an ob-
ject. For example, the short name for the list parent issimply | i st par ent .

Non-parent slots are used when it is desirable to keep a part of the name space distinct. For exam-
ple, thetrait s slot of the lobby is not a parent slot. This allows a convention that gives proto-

types and their associated traits objects similar names: a prototype and its associated traits object
have the same local name, but the prototype is placed in aslot in thegl obal s object, whereas the
traits of the prototypeisplacedinasdlotinthet r ai t s object. Sincethet r ai t s slot of the lobby

30

The SELF World The Roots of Behavior

isnot a parent slot, the name of the traits object must start with the prefix t rai t s. Thegl obal s
slot, on the other hand, is a parent slot, so the name of a prototype object needs no prefix. Thus,
| i st refersto the prototypelist whiletraits |i st referstoitstraits object for lists.

As amatter of style, programs should refer to objects by the shortest possible name. This makes it
easier to re-organize the global namespace as the system evolves. (If programs used full path
names, then many more names would have to be updated to reflect changes to the namespace or-
ganization, atedious chore.)

3.2 The Roots of Behavior

3.2.1 Default Behavior
Certain common behavior is shared by nearly al objectsin the SELF world. This basic behavior is
defined inthe def aul t Behavi or dot of the lobby and includes:

* identity comparisons (== and ! ==

e inequality (! =)

 default behavior for printing (reimplement pri nt St ri ng in descendants)

* mirror creation (r ef | ect :)

 support for point, and list construction (@and &)

» behavior that allows blocks to ignore extra arguments

» behavior that allows an object to behave like a block that evaluates to that object (this per-
mits a non-block object to be passed to a method that expects a block)

» behavior that allows an object to be its own key in acollection (key)

* default behavior for doubly-dispatched messages

» behavior for printing error messages and stack dumps (error : and hal t)
It isimportant to note that not all objectsin the system inherit this default behavior . It isentirely
permissible to construct objects that do not inherit from the lobby , and the SELF world contains
quite afew such objects. For example, the objects used to break a namespace into separate catego-
riestypically do not inherit from the lobby. Any program intended to operate on arbitrary objects,

such as a debugger, must therefore assume that the objects it manipulates do not understand even
the messagesin def aul t Behavi or.

Modules: defaultBehavior, errorHandling

3.2.2 TheRoot Traits: Traits Clonable and Traits Oddball

Most concrete objects in the SELF world are descendants of one of two top-level traits objects:
traits clonableandtraits oddbal | . Thedistinction between the two is based on whether
or not the object is unique. For example, t r ue isaunique object. Thereisonly one t r ue object

31

The SELF World Blocks, Booleans, and Control Structures

in the entire system, although there are many references to it. On the other hand, alist object is not
unique. There may be many listsin the system, each containing diferent elements. A unique object
responds to the message copy by returning itself and usesidentity to test for equality. The genera
ruleis:

* unique objectsusually inherit fromtrai ts oddbal |

* non-unique objects usually inherit fromtraits cl onabl e

Module: rootTraits

3.2.3 Mixins

Like traits objects, mixin objects encapsulate a bundle of shared behavior . Unlike traits objects,
however, mixin objects are generally parentless to allow their behavior to be added to an object

without necessarily also adding unwanted behavior (such as access to the lobby namespace). Mix-
ins are generally used in objects that also have other parents. An exampleismi xi ns identity.

3.2.4 Theldentity Mixin

Two objects are usually tested for equality based on whether they have “the same value” within a
common domain. For example, 3. 0 = 3 within the domain of numbers, even though they are not
the same object or even the same kind of object. In some domains, however, two objects are equal
if and only if they are the exact same object. For example, even two process objects with the same
state are not considered equal unless they areidentical. In such cases, identity comparison is used
to implement equality tests, and mi xi ns i denti ty can bemixed into get the desired behavior.

Module: rootTraits

3.3 Blocks, Booleans, and Control Structures

A block isaspecial kind of object containing a sequence of statements. When ablock is evaluated
by being sent an acceptable val ue message, its statements are executed in the context of the cur-
rent activation of the method in which the block is declared. This alows the statements in the block
to access variableslocal to the block’s enclosing method and any enclosing blocks in that method.
(This set of variables comprises the lexical scope of the block.) It aso means that within the block,
sel f refersto the receiver of the message that activated the method, not to the block object itself.
A return statement in a block causes areturn from the block’ s enclosing method. (See the SELF
L anguage Reference for a more thorough discussion of block semantics.)

A block can take an arbitrary number of aguments and can have its own local variables, aswell as
having access to the local variables of its enclosing method. The statements in the block are exe-
cuted when the block is sent a message of the form *val ue[: {Wt h: }]”, where the number of co-
lonsin the message is at |east the same as the number of ar guments the block takes (extra
arguments are ignored, but it is an error to provide too few). For example, the following block
takes two arguments.

32

The SELF World Blocks, Booleans, and Control Structures

[| argl. :arg2 | argl + arg2]

and can be evaluated by sending it the message val ue: W't h: to produce the sum of itsar gu-
ments. Blocks are used to implement al control structuresin SELF and allow the programmer to
easily extend the system with customized control structures. In fact, all control stucturesin SELF
except message sends, returns, and VM error handling are implemented using blocks.

3.3.1 Booleans and Conditionals

The fundamental control structure isthe conditional. In SELF, the behavior of conditionalsis de-
fined by two unique boolean objects, t r ue and f al se. Boolean objects respond to the messages
i f True:,ifFalse:,ifTrue: Fal se:,andif Fal se: True: by evaluating the appropriate ar-
gument block. For example, t r ue implementsi f Tr ue: Fal se: as.

ifTrue: bl False: b2 = (bl value)

Thatis, whentrueissentif True: Fal se:, it evaluates thefirst block and ignores the second.
For example, the following expression evaluates to the absolute value of x:

x <0 ifTrue: [x negate] False: [x]

The booleans also define behavior for the logical operations AND (&&), OR (| |), EXCLUSIVE-OR
(*n), andNOT (not). Because the binary boolean operators al sendval ue to their agument when
necessary, they can also be used for “short-circuit” evaluation by supplying ablock, e.g.:

(0 <=1i) & [i < maxByte pred] ifTrue: [...

M odule: boolean

3.3.2 Loops
The variousidioms for constructing loopsin SELF are best illustrated by example.
Hereis an endless loop:
[...] loop
Here are two loops that test for their termination condition at the beginning of the loop:

[proceed] whileTrue: [...]
[quit] whileFalse: [...]

In each case, the block that receives the message repeatedly evaluates itself and, if the termination
condition is not yet met, evaluates the ar gument block. The value returned by both loop expres-
sionsisni | .

It is also possible to put the termination test at the end of the loop, ensuring that the loop body is
executed at least once:

33

The SELF World Blocks, Booleans, and Control Structures

[...] wuntilTrue: [quit]
[...] wuntilFalse: [proceed]

Hereisaloop that exits from the middle when qui t becomest r ue:
[|] :exit | ... quit ifTrue: exit ...] |oopExit

For the incurably curious: the parameter to the user’ s block, supplied by thel oopExi t method, issimply ablock that
does areturn from the | oopExi t method. Thus, the loop terminateswhen exi t val ue isevaluated. The con-
structs| oopExi t Val ue, exi t, and exi t Val ue areimplemented in a similar manner.

The value returned by the overall “[.. .] | oopExit” expressionisni | . Hereisaloop expres-
sion that exits and evaluates to a value determined by the programmer when quit becomes true:

[| :exit | ... quit ifTrue: [exit value: expr]] |oopExitVal ue

Module: block

3.3.3 Block Exits

It is sometimes convenient to exit a block early, without executing its remaining statements. The
following constructs support this behavior:

cexit | ... quit ifTrue: exit ...] exit
cexit | ... quit ifTrue: [exit value: expr] ...] exitValue

[
[l

Thefirst expression evaluatestoni | if the block exits early; the second allows the programmer to
define the expression’s value when the block exits early. Note: These constructs should not be con-
fused with their looping counterparts| oopExi t and | oopExi t Val ue.

Module: block

3.3.4 Other Block Behavior

Blocks have some other useful behavior:

» One can determine the time in milliseconds required to execute a block using various ways
of measuring time using the messages user Ti mg syst enili ng cpuTi ng and r eal -
Ti me.

» One can profile the execution of ablock using the messages profileandfl at Profil e.
prof i | e prints out the source level call graph annotated with call site and timing informa-
tion whereasf | at Pr of i | e printsout aflat profile sorted by module.

* Themessage count Sends will collect lookup statistics during a block execution.

Any object that inherits from the lobby can be passed to a method that expects a block; behavior
indef aul t Behavi or makes the object behave like a block that evaluates to that object.

Module: block

The SELF World Numbers and Time

3.4 Numbersand Time

The SELF number traits form the hierarchy shown below . (In this and subsequent hierarchy de-

scriptions, indentation indicates that one traits object is a child of another . The prefix “traits’ is
omitted since these hierarchy descriptions always describe the interrelationship between traits ob-
jects. In most cases, leaf traits are concrete and have an associated prototype with the same name.)

order edCddbal |
number
fl oat
i nt eger
smal | | nt
bi gl nt

traits nunber definesbehavior common to al numbers, such as successor, succ, prede-
cessor, pred, absol ut eval ue, negat e, doubl e, half, max:,andnin:.traits num
ber inheritsfromtraits orderedQddbal | , sosendingcopy orcl one to anumber returns the
number itself. trai t s i nt eger defines behavior common to al integers such aseven, odd, and
factori al. There are four division operators for integers that allow the programmer to control
how the result is truncated or rounded. Integers also include behavior for iterating through a sub-
range, including:

t o: Do:

t o: By: Do:

t o: ByNegat i ve: Do:
upTo: Do:

upTo: By: Do:
downTo: Do:
downTo: By: Do:

Relevant oddballs:
e infinity | EEE floating-point infinity
e mnSmal | I nt smallest smallint in thisimplementation

* maxSnal | I nt biggest smallint in thisimplementation

Modules. number, float, integer, smallint, bigint

3.4.1 Random Numbers

cl onabl e
random
randonlLC
prot ot ypes random

Trai ts randomdefinesthe abstract behavior of random number generators. A random number
generator can be used to generate random booleans, integers, floats, charactersor strings.trai t s

35

The SELF World Collections

r andonl Cdefines a concrete specialization based on a simple linear congruence agorithm. For
convenience, the prototype for r andoniL.Cis“random” not “r andonlC’.

Modules: random

3.4.2 Time

cl onabl e
tinme

A time object represents a date and time (to the nearest millisecond) since midnight GMT on Jan-
uary 1, 1970. The message cur r ent returns a new time object containing the current time. Two
times can be compared using the standard comparison operators. One time can be subtracted from
another to produce a value in milliseconds. An of fset in milliseconds can be added or subtracted
from atime object to produce a new time object. However , it is an error to add two time objects
together.

Modules; time

3.5 Collections

cl onabl e
coll ection
collection hierarchy ...

Collections are containers that hold zero or more other objects. In SELF, collections behave as if
they have a key associated with each value in the collection. Collections without an obvious key,
such as lists, use each element as both key and value. Iterations over collections always pass both
the value and the key of each element (in that order) to the iteration block. Since SELF blocksig-
nore extra arguments, this allows applications that don’t care about keys to simply provide a block
that takes only one argument.

Collections have arich protocol. Additions are made withat : Put : , or withadd: oraddAl | : for
implicitly keyed collections. Iteration can be done with do: or with variations that allow the pro-
grammer to specify special handling of the first and/or last element. wi t h: Do: allows pairwise it-
eration through two collections. The i ncl udes, occurrencesOf and findFirst:
| f Present: | f Absent :messages test for the presence of particular values in the collection.
filterBy:|nto: createsanew collection including only those elements that satisfy a predicate
block, whilemapBy: | nt o: creates anew collection whose elements are the result of applying the
argument block to each element of the original collection.

Abstract collection behavior is defined in traits collection. Only a small handful of operations need
be implemented to create a new type of collection; the rest can be inherited from traits col -

| ecti on. (Seethedescendant Responsi bility dotoftraits collection.) Thefollow-
ing sections discuss various kinds of collection in more detail.

Modules: collection (abstract collection behavior)

36

The SELF World Collections

3.5.1 Indexable Collections

coll ection
i ndexabl e
nmut abl el ndexabl e

byt eVect or
...the string hierarchy

sequence
sort edSequence

vect or

Indexable collections allow random access to their elements via keys that are integers. All se-
guences and vectors are indexable. The message at : isused to retrieve an element of an index-
able collection while at : Put : isused to update an element of anut abl el ndexabl e collection
(other than asor t edSequence).

Modules: indexable, abstractString, vector, sequence, sortedSequence

3.5.2 Strings, Characters, and Paragraphs
col I ection

byt eVect or
string
nut abl eStri ng
i mrut abl eStri ng
canoni cal String

A string is a vector whose elements are character objects. There are three kinds of concrete string:

immutable strings, mutable strings and canonical strings. trai ts st ri ng defines the behavior

shared by all strings. A character isastring of length one that references itself in its sole indexable
slot.

Mutable strings can be changed using the messageat : Put : , which takes a character argument, or
at : Put Byt e:, which takes an integer ar gument. An immutable string cannot be modified, but
sending it the copyMut abl e message returns a mutable string containing the same characters.

Canonical strings are registered in an table inside the virtual machine, like Symbol objectsin
Smalltalk or atomsin LISP. The VM guarantees that there is at most one canonical string for any
given sequence of bytes, so two canonical strings are equal (have the same contents) if and only if
they are identical (are the same object). This allows ef ficient equality checks between canonical
strings. All message selectors and string literals are canonical strings, and some primitives require
canonical strings as arguments. Sending canoni cal i ze to any string returns the corresponding
canonical string.

Character objects behave like immutable strings of length one. There are 256 well-known charac-
ter objectsin the SELF universe. They are stored in a 256-element vector namedasci i , with each
character stored at the location corresponding to its ASCII value. Characters respond to the mes-

37

The SELF World Collections

sage asByt e by returning their ASCII value (that is, their index inasci i). The inverse of asBy-
t e, asChar act er, can be sent to an integer between 0 and 255 to obtain the corresponding
character object.

Module: string

3.5.3 Unordered Setsand Dictionaries

col I ection
setOrDictionary
set
shar edSet
di ctionary
shar edDi cti onary

There are two implementations of sets and dictionaries in the system. The one described in this
section is based on hash tables. The one discussed in the following section is based on sorted bina-
ry trees. The hash table implementation has better performance over a wide range of conditions.
(An unfortunate ordering of element addtions can cause the unbalanced trees used in the tree ver-
sion to degenerate into an ordered lists, resulting in linear access times.)

A set behaves like a mathematical set. It contains elements without duplication in no particular or-
der. A dictionary implements a mapping from keys to values, where both keys and values are arbi-
trary objects. Dictionaries implement the usual collection behavior plus keyed access using at :
and at : Put : and the dictionary-specific operationsi ncl udesKey: andr enoveKey: . In order
to store an object in aset or use it as adictionary key , the object must understand the messages
hash and =, the latter applying to any pair of itemsin the collection. Thisis because sets and dic-
tionaries are implemented as hash tables.

Derived from set and dictionary areshar edSet andshar edDi cti onary . These provide locking
to maintain internal consistency in the presence of concurrency.

Modules: setAndDictionary, sharedSetAndDictionary

3.5.4 Tree-Based Sets and Dictionaries

coll ection
tree

treeNodes abstract
t reeNodes bag
treeNodes set

enpt yTrees abstract
enptyTr ees bag
enptyTrees set

treeSet and t r eeBag implement sorted collections using binary trees. The set variant ignores
duplicates, while the bag variant does not. Tree sets and bags allow both explicit and implicit keys
(that is, adding elements can be done with either at : Put : or add:), where atree set that uses ex-

38

The SELF World Collections

plicit keys behaves like adictionary. Sorting is done on explicit keys if present, values otherwise,
and the objects sorted must be mutually comparable. Comparisons between keys are made using
conpare: | fLess: Equal : Greater:

The implementation of trees uses dynamic inheritance to distinguish the difering behavior of emp-
ty and non-empty subtrees. The prototype t r eeSet represents an empty (sub)tree; when an ele-
ment is added to it, its parent is switched fromt rai t s enpt yTrees set, which holds behavior
for empty (sub)trees, to a new copy of t r eeSet Node, which represents a tree node holding an el-
ement. Thus, thet r eeSet object now behaves as at r eeSet Node object, with right and left sub-
trees (initially copies of the empty subtree t r eeSet). Dynamic inheritance allows one object to
behave modally without using clumsy if-tests throughout every method.

One caveat: since these trees are not balanced, they can degenerate into lists if their elements are
added in sorted order. However, a more complex tree data structure might obscure the main point
of thisimplementation: to provide a canonical example of the use of dynamic inheritance.

Modules: tree

3.5.5 Listsand PriorityQueues

col l ection
list
priorityQueue

A list isan unkeyed, circular, doubly-linked list of objects. Additions and removals at either end
are efficient, but removing an object in the middle isless so, as alinear search isinvolved..

A priorityQueue is an unkeyed, unordered collection with the property that the element with the
highest priority is always at the front of the queue. Priority queues are useful for sorting (heapsort)
and scheduling. The default comparison uses <, but this can be changed.

Modules: list. priorityQueue

3.5.6 Constructing and Concatenating Collections

cl onabl e
col l ector

Two kinds of objects play supporting roles for collections. A col | ect or object is created using
the & operator (inherited from def aul t Behavi or), and represents a collection under construc-
tion. The & operator provides a concise syntax for constructing small collections. For example:

(1 & "abc’ & x) aslLi st

constructs alist containing an integer, a string, and the object x. A col | ect or object isnot itself
acollection; it is converted into one using a conversion message such as asLi st, asVect or, or
asString.

39

The SELF World Pairs

M odules; collector

3.6 Pairs

pair
poi nt
rectangl e

traits pair describesthe general behavior for pairs of arithmetic quantities. A point isa pair
of numbers representing alocation on the cartesian plane. A rectangle is a pair of points represent-
ing the opposing corners of arectangle whose sides are parallel with the x and y axes.

Modules: pair, point, rectangle

3.7 Mirrors

col l ection
mrror
mrrors smalllnt
mrrors float
mrrors vectorish
mrrors vector
mrrors byteVector
mrrors canonical String
rrors mrror
rrors bl ock
rrors method
mrrors bl ockMet hod
mrrors activation |iveOnes
mrrors activation
mrrors deadActivation
mrrors nethodActivation
m rrors bl ockMet hodActi vati on
rrors process
rrors assi gnment
rrors slots
rrors profiler

3.3 3

3.3 3 3.

Mirrors alow programs to examine and manipulate objects. (Mirrors get their name from the fact
that a program can use amirror to examine—that is, reflect upon—itself.) A mirror on an object x
is obtained by sending the messager ef | ect : x to any object that inherits def aul t Behavi or.
The object x is called the mirror’s reflectee. A mirror behaves like a keyed collection whose keys
are slot names and whose values are mirrors on the contents of slots of the reflectee. A mirror can
be queried to discover the number and names of the dlotsin its reflectee, and which dots are parent
slots. A mirror can be used to add and remove slots of its reflectee. Iterating through amirror enu-
merates obj ects representing slots of the reflected object (such facets are called “fake” dlots). For

40

The SELF World Messages

example, a method mirror includes fake sots for the method's byte code and literal vectors and el-
ements of vectors and byteVectors.

Thereisone kind of mirror for each kind of object known to the virtual machine: small integers,

floats, canonical strings, object and byte vectors, mirrors, blocks, ordinary and block methods, or-
dinary and block method activations, processes, profilers, the assignment primitive, and ordinary
objects (called “slots” because an ordinary object isjust a set of slots). The prototypes for these

mirrors are part of the initial S ELF world that exists before reading in any script files. The file

i nit.self movesthese prototypesto theni rr or s subcategory of thepr ot ot ypes category of
the | obby namespace. Because i r r or s isnot a parent slot, the names of the mirror prototypes
alwaysincludethe“mi rrors” prefix.

Modules: mirror, dot, init

3.8 Messages

SELF alows messages to be manipulated as objects when convenient. For example, if an object
failsto understand a message, the object is notified of the problem via a message whose aguments
include the selector of the message that was not understood. While most objects inherit default
behavior for handling this situation (by halting with an error), it is sometimes convenient for an ob-
ject to handle the situation itself, perhaps by resending the message to some other object. Objects
that do this are called transparent forwarders. An exampleisgivenini nt er cept or.

A string has the basic ability to useitself as a message selector using the messagessendTo: (nor-
mal message sends), r esendTo: (resends), or sendTo: Del egat i ngTo(delegated sends).
Each of these messages has a number of variations based on the number of aguments the message
has. For example, one would usedsendTo: Wt h: Wt h: to send amessage withat : Put : asthe
selector and two arguments:

"at:Put:' sendTo: abict Wth: k Wth: v
(Note: primitives such as_Print cannot be sent in the current system.)

A selector, receiver, delegatee, methodHolder, and arguments can be bundled together in a mes-
sage object. The message gets sent when the message object receives thesend message. Message
objects are used to describe delayed actions, such as the actions that should occur just before or af-
ter asnapshot isread. They are also used as an ar gument to new process creation (you can create
anew process to execute the message by sending it f or k).

Modules: sending, message, selector, interceptor

3.9 Processes and the Prompt

SELF processes are managed by a simple preemptive round-robin scheduler . Processes can be
stepped, suspended, resumed, terminated, or put to sleep for a specified amount of time. Also, the

41

The SELF World Foreign Objects

stack of a suspended process can be examined and the CPU use of a process can be determined. A
process can be created by sending f or k to anessage.

The pr onpt object takesinput from st di n and spawns a process to eval uate the message. I nput
to the prompt is kept in a history list so that past input can be replayed, similar to the history mech-
anism in manyUnix shells.

Modules: process, scheduler, semaphore, prompt, history

3.10 Foreign Objects

cl onabl e
pr oxy
f ct Proxy
f orei gnFct
f or ei gnCode

The low level aspects of interfacing with code written in other languages (via C or C++ glue code)
are described in the VM Reference Manual. A number of objectsin the SELF world are used to in-
terface to foreign data objects and functions. These objects are found in the name spacestraits

f orei gn,and gl obal s foreign.

One difficulty in interfacing between SELF and external data and functionsis that referencesto for-
eign data and functions from within SELF can become obsolete when the SELF world is saved as
a snapshot and then read in later, possibly on some other workstation. Using an obsolete reference
(i.e., memory address) would be disastrous. Thus, SELF encapsulates such references within the
special objects pr oxy (for datareferences) and f ct Pr oxy (for function references). Such objects
are known collectively as proxies. A proxy object bundles some extrainformation along with the
memory address of the referenced object and uses this extra information to detect (with high prob-
ability) any attempt to use an obsolete proxy. An obsolete proxy is called a dead proxy.

To make it possible to rapidly develop foreign code, the virtual machine supports dynamic linking
of this code. This makes it unnecessary to rebuild the virtual machine each time a small changeis
made to the foreign code. Dynamic linking facilities vary from platform to platform, but the SELF
interface to the linking facilitiesis largely system independent. The SunOS/Solaris dynamic link
interface is defined in thesunLi nker object. However, clients should always refer to the dynamic
linking facilities by the name | i nker, which will beinitialized to point to the dynamic linker in-
terface appropriate for the current platform.

Thel i nker, proxy andf ct Proxy objects are rather low level and have only limited functional-
ity. For example, a f ct Pr oxy does not know which code file it is dependent on. The objects

f orei gnFct andf or ei gnCode establish ahigher level and easier to use interface. Af or ei gn-

Code object represents an “object file” (afile with executable code). It defines methods for loading
and unloading the object file it represents. A f or ei gnFct object represents aforeign routine. It

understands messages for calling the foreign routine and has associated with it a f or ei gnCode
object. The f or ei gnFct and f or ei gnCodeobjects cooperate with the linker , to ensure that

42

The SELF World [/O and Unix

object files are transparently loaded when necessary and thatf ct Pr oxi es depending on an object
file are killed when the object file is unloaded, etc.

Thef or ei gnCodeDB object ensuresthat f or ei gnCode objects are unique, given a path. It also
allows for specifying initializers and finalizers on f or ei gnCode objects. An initializer isafor-
eign routine that is called whenever the object file isloaded. Initializers take no arguments and do
not return values. Typically, they initialize global data structures. Finalizers are called when an ob-
ject fileis unloaded. When debugging foreign routines, f or ei gnCodeDB pri nt St at us outputs
auseful overview.

Normal use of aforeign routine simply involves cloning a f or ei gnFct object to represent the
foreign routine. When cloning it, the name of the function and the path of the object fileis
specified. It isthen not necessary to worry about pr oxy, f ct Proxy and | i nker objects, etc. In
fact, it isrecommended not to send messages directly to these objects, since this may break the
higher level invariantsthat f or ei gnFct objectsrely on.

Relevant oddballs:

li nker dynamic linker for current platform
sunLi nker dynamic linker implementation for SunOS/Solaris
f or ei gnCodeDB registry for f or ei gnCode objects

Modules: foreign

3.11 I/0O and Unix

oddbal |
uni x
cl onabl e

pr oxy
uni XFile (mxes in traits unixFile currentGsVari ant)

The oddball object uni x provides access to selected Unix system calls. The most common calls
are thefile operations: creat (), open(), cl ose(), read(), wite(), | seek()and un-
l'i nk().tcpConnect ToHost : Port: | f Fai | :opensaTCP connection. The sel ect () call
and the indirect system call are also supported (taking a variable number of integer, float or byte
vector arguments, the latter being passed as C pointers). uni xFi | e provides ahigher level inter-
face to the Unix file operations. The oddball objectt t y implements terminal control facilities such
as cursor positioning and highlighting.

Relevant oddballs:
stdin, stdout, stderr standard Unix streams
tty console terminal capabilities

Modules: unix, stdin, tty, ttySupport, termcap

43

The SELF World

Other Objects

3.12 Other Objects

Here are some interesting oddball objects not discussed elsewhere:

conpar at or
conpi l erProfiling
deskt op

hi story

menory

noni t or

ni |

pl at f or s

pref erences
profiling,flatProfiling
pr onpt

schedul er
snapshot Acti on

t hi sHost

times

typeSi zes
viProfiling

an object that can compute “diffs’ between sequences
compiler profiling

The controlling object for the graphical user interface

A history of commands typed at the prompt, and their results
memory system interface (GC, snapshot, low space, etc.)
system monitor (spy) control

indicates an uninitialized value

possible hardware platforms

user configuration preferences

controls SELF code profiling

interactive read-eval-print loop

SELF process scheduler

actions to do before/after a snapshot

describes the current host platform

reports user, system, cpu, or real time

bit/byte sizes for primitive types

virtual machine profiling

The SELF World How to build the world

3.13 How to build theworld

Should you need to reconstruct a world from the source files, here’'s how to do it. This section de-
scribes how to create a default object world by reading in the &LF source code provided with your
distribution (in Opt i onal . Sel f Sour ce. t ar. Z. You can also do this after writing the world
out using the transporter (t ransporter fileQut fileQutAll).

To create the default object world:
1. Start the SELFVM:

% Sel f
Self Virtual Machine Version 4.0.2, Thu 09 Feb 95 19: 41: 30
Copyright 1989-95: The Self Goup (type Credits for credits)

VIV
2. (Optional, but recommended.) Start the spy so you can watch the world fill up with objects:
VM Spy: true
Note that because the world is empty, you must use the primitive to do this.
3. Read in the default world. To do this, ask SELF to read expressions from afile:
VMt 'rel ease4_0.self' _RunScri pt

Various configurations are possible: r el ease4_0 isthereleased system; snal | Ul 2 isthe
same but without the various example applications; al | contains the old (release 3.0) experi-
mental user interface; al | 2 contains both user interfaces, and the test suite.

Unless you have asked SELF not to print script names, you should see something like:

readi ng rel ease4 0. sel f
reading init.self

4. After al the files have been read in, SELF will start the process scheduler, initialize its module
cache, and print:

“Self 0"

That last line isthe SELF prompt indicating that the system is ready to read and eval uate ex-
pressions.

45

The SELF World How to use the low-level interrupt facilities

3.14 How to usethelow-level interrupt facilities

There are two low-level ways to interrupt arunning SELF programT, Control-C and Control-\. The
second way works even if the SELF process scheduler is not running.

In response to the interrupt, you will see one of two things. If the SELF scheduler is not running,
you will be returned directly to the Vv prompt. If the scheduler is running, you will be presented
with alist of SELF processes (the process menu):

Sel f 9> 100000 * 100000 do: []
rC

Ready:

<25> schedul i ng process 100000 * 100000 do: []
Sel ect a process (or g to quit scheduler): 25
Sel ect <return> for no action

p to print the stack

k to kill the process

b to resune execution of the process in the background
S to suspend execution of the process

for process 25: k
Process 25 killed.

Sel f 10>

In this example, the loop was interrupted by typing Control-C, and the process menu was used to
abort the process. If the user had typed “q” to quit the scheduler, all current processes would have
been aborted along with the scheduler itself:

Sel ect a process (or g to quit scheduler): q
Schedul er shut down.

The scheduler has been stopped, returning the user to the VM# prompt. The command pr onpt
st art restartsthe scheduler:

VM# pronpt start
Sel f 11>

Although the VM# prompt can be used to evaluate expressions directly , the scheduler supports
much nicer error messages and debugging, so it isusually best to run the scheduler (The scheduler
is started automatically when the default world is created.)

Certain virtual machine operations like garbage collection, reading a snapshot, and compilation
cannot be interrupted; interrupts during these operations will be deferred until the operation is

46

The SELF World

How to use the low-level interrupt facilities

complete. Asalast resort (e.g., if the system appears to be “hung”), you can force an abort by

pressing Control-\ five timesi

n arow.

3.15 Using the textual debugger

If you are modifying the core of the programming environment or working without the environ-
ment you may need to use the textual debugger After attaching the aborted process to the debugger

using the shell command attach, these commands are available:

Command Description
attach: n attach the process with object reference number n
detach detach the debugged process
step[:n] execute (n) non trivial bytecodes?
stepi[:n] execute (n) bytecodes
next[:n] execute (n) non trivial bytecodes in the current activation
nexti[:n] execute (n) bytecodesin the current activation
finish finish executing the current activation
cont continue execution
trace print out a stack trace of the process
show display the current activation
show: n go to and display the nth activation on the stack
status display the status of the debugged process
up[: n] go up (n) activation(s)
upLex go up to the lexical enclosing scope of this activation
down[: n] go down (n) activation(s)
lookup: <name> | lookup the given name in the context of the current activation

a A bytecodel

strivia It ItiIsapush or aliteral or asend to asot residing 1n

the lexical scope of the current activation.

47

The SELF World Glossary of Useful Selectors

Appendix 3.A Glossary of Useful Selectors

This glossary lists some useful selectors. It is by no means exhaustive.

48

The SELF World Glossary of Useful Selectors
half divide by two

quarter divide by four

min:; minimum of receiver and argument

max: maximum of receiver and argument

mean: mean of receiver and argument

pred predecessor

predecessor predecessor

succ successor

successor successor

power: raise receiver to integer power

log: logarithm of argument base receiver, rounded down to integer
square square

squareRoot square root

factorial factorial

fibonacci fibonacci

sign signum (-1, 0, 1)

even trueif receiver is even

odd trueif receiver isodd

49

The SELF World Glossary of Useful Selectors

printStringDepth: return a string label with depth limitation request
printStringSize: return a string label with number of characters limitation request
printStringSize:Depth: return a string label with depth and size limitation request

50

The SELF World Glossary of Useful Selectors

51

The SELF World Glossary of Useful Selectors

52

The SELF World Glossary of Useful Selectors

53

The SELF World Glossary of Useful Selectors

sendersOf:[Limit:] returns avector of mirrors on methods whose selectors match the given
selector (up to the limit)

4 A Guideto Programming Style

This section discusses some programming idioms and stylistic conventions that have evolved in
the SELF group. Rather than ssimply presenting a set of rules, an attempt has been made to explain
the reasons for each stylistic convention. While these conventions have proven useful to the SELF
group, they should be taken as guidelines, not commandments. ELF is still ayoung language, and
itislikely that its users will continue to discover new and better waysto useit effectively.

4.1 Behaviorism versus Reflection

One of the central principles of SELF isthat an object is completely defined by its behavior: that
is, how it responds to messages. Thisidea, which is sometimes calledbehaviorism, alows one ob-
ject to be substituted for another without ill effect—provided, of course, that the new object’s be-
havior is similar enough to the old object’s behavior. For example, a program that plots pointsin a
plane should not care whether the points being plotted are represented internally in cartesian or po-
lar coordinates as long as their external behavior is the same. Another example arisesin program
animation. One way to animate a sorting algorithm is to replace the collection being sorted with an
object that behaves like the original collection but, as a side efect, updates a picture of itself on the
screen each time two elements are swapped. behaviorism makes it easier to extend and reuse pro-
grams, perhaps even in ways that were not anticipated by the program’s author.

It is possible, however, to write non-behavioral programsin SELF. For example, a program that ex-
amines and manipul ates the slots of an object directly, rather than via messages, is not behavioral
sinceit is sengitive to the internal representation of the object. Such programs are calledreflective,
because they are reflecting on the objects and using them as data, rather than using the objects to
represent something else in the world. Reflection is used to talk about an object rather that talking
toit. In SELF, thisis done with objects called mirrors. There are times when reflection is unavoid-
able. For example, the SELF programming environment is reflective, since its purposeisto let the
programmer examine the structure of objects, an inherently reflective activity. Whenever possible,,
however, reflective techniques should be avoided as a matter of style, since areflective program
may fail if the internal structure of its objects changes. This places constraints on the situations in
which the reflective program can be reused, limiting opportunities for reuse and making program
evolution more difficult. Furthermore, reflective programs are not as amenable to automatic anal-
ysis tools such as application extractors or type inferencers.

Programs that depend on object identity are also reflective, athough this may not be entirely obvi-
ous. For example, a program that tests to seeif an object isidentical to the object t r ue may not
behave as expected if the system is later extended to include fuzzy logic objects. Thus, like reflec-
tion, it is best to avoid using object identity. One exception to this guideline is worth mentioning.
When testing to seeif two collections are equal, observing that the collections are actually the
same object can save atedious el ement-by-element comparison. Thistrick is used in several places
in the SELF world. Note, however, that object identity is used only as a hint; the correct result will
still be computed, albeit more slowly, if the collections are equal but not identical.

Sometimes the implementation of a program requires reflection. Suppose one wanted to write a
program to count the number of unique objectsin an arbitrary collection. The collection could, in

56

SEL F-Styled Programming Objects Have Many Roles

general, contain objects of different, possibly incomparable, types. In Smalltalk, one would use an
| dentity Set to ensure that each object was counted exactly once. |dentitySets are reflective, since
they use identity comparisons. In SELF, the preferred way to solve this problem is to make the re-
flection explicit by using mirrors. Rather than adding objects to an IdentitySet, mirrors on the ob-
jects would be added to an ordinary set. This substitution works because two mirrors are equal if
and only if their reflectees are identical.

In short, to maximize the opportunities for code reuse, the programmer should:
* avoid reflection when possible,
 avoid depending on object identity except as a hint, and
» use mirrors to make reflection explicit when it is necessary.

4.2 ObjectsHave Many Roles

Objectsin SELF have many roles. Primarily, of course, they are the elements of data and behavior
in programs. But objects are also used to factor out shared behavior, to represent unique objects, to
organize objects and behavior, and to implement elegant control structures. Each of these uses are
described below.

4.2.1 Shared Behavior

Sometimes a set of objects should have the same behavior for a set of messages. The slots defining
this shared behavior could be replicated in each object but this makesiit difficult to ensure the ob-
jects continue to share the behavior as the program evolves, since the programmer must remember
to apply the same changesto all the objects sharing the behavior Factoring out the shared behavior
into a separate object alows the programmer to change the behavior of the entire set of objects sim-
ply by changing the one object that implements the shared behavior . The objects that share the
behavior inherit it via parent slots containing (references to) the shared behavior object.

By convention, two kinds of objects are used to hold shared behavior: traitsand mixins. A traits
object typically has a chain of ancestors rooted in the lobby. A mixin object typically has no par-
ents, and is meant to be used as an additional parent for some object that already inherits from the
lobby.

4.2.2 One-of-a-kind Objects (Oddballs)

Some objects, such asthe object t r ue, are unique; it is only necessary to have one of them in the
system. (It may even be important that the system containexactly one of some kind of object.) Ob-
jects playing the role of unique objects are called oddballs. Because there is no need to share the
behavior of an oddball anong many instances, there is no need for an oddball to have separate
traits and prototype objects. Many oddballs inherit a copy method fromtrai ts oddbal | that
returns the object itself rather than a new copy, and most oddballs inherit the global namespace and
default behavior from the [obby.

57

SEL F-Styled Programming Naming and Printing

4.2.3 Inline Objects

Aninline object is an object that is nested in the code of a method object. The inline object is usu-
aly intended for localized use within a program. For example, in afinite state machine implemen-
tation, the state of the machine might be encoded in a selector that would be sent to an inline object
to select the behavior for the next state transition:

state sendTo: (|

inComment: ¢ = (¢ =""" ifTrue: [state: '"inCode']. self).
inCode: ¢ =(¢c =""" ifTrue: [state: 'inComent']
False: ...)

|)
Wt h: next Char

In this case, the inline object is playing the role of a case statement.

Another use of inline objectsis to return multiple values from a method, as discussed in section
4.4. Yet another use of inline objects is to parameterize the behavior of some other object. For ex-
ample, the predicate used to order objectsina pri ori t yQueue can be specified using an inline
object:

queue: priorityQueue copyRenoveAll.
queue sorter: (| elenent: el Precedes: e2 = (el >e2) |).

(A block cannot be used here because the current implementation of SELF does not support non-
L1FO blocks, and the sorter object may outlive the method that createsit). There are undoubtedly
other uses of inline objects. Inline objects do not generally inherit from the lobby.

4.3 Naming and Printing

When debugging or exploring in the SELF world, one often wants to answer the question: “what is
that object?’ The SELF environment provides two ways to answer that question. First, many ob-
jects respond to the pri nt St ri ng message with atextual description of themselves. This string
is called the object’s printString. An object’s printString can be quite detailed; standard protocol
allows the desired amount of detail to be specified by the requestor . For example, the printString
for a collection might include the printStrings of all elements or just the first few . Not all objects
have printStrings, only those that satisfy the criteria discussed in section 4.3.2 below.

The second way to describe an object isto give itspath name. A path name is a sequence of unary
selectors that describes a path from the lobby to the object. For example, the full path name of the
prototype list is“globalslist.” A path nameis aso an expression that can be evaluated (in the con-
text of the lobby) to produce the object. Because “globals’ is a parent dlots, it can be omitted from
this path name expression. Doing this yields the short path name “list.” Not all objects have path
names, only those that can be reached from the lobby. Such objects are called well-known.

4.3.1 How objectsare printed

When an expression istyped at the prompt, it is evaluated to produce a result object. The prompt
then creates amirror on this result object and asks the mirror to produce a name for the object. (A

58

SEL F-Styled Programming How to Return Multiple Values

mirror is used because naming is reflective.) The object’ s creator path annotation provides a hint
about the path from the lobby to either the object itself or its prototype. If the object isaclone“a”
or “an” is prepended to its prototype’ s creator path. In addition to its path, the mirror also tries to
computeapri nt St ri ng for the object if it is annotated asi sConpl et e. Then, the two pieces of
information are merged. For example, the name of the prototypelistis“list” but the name ofl i st
copy add: 17 is“alist(17).” Seethe naming category in mirror traits for the details of this pro-
Cess.

4.3.2 How to make an object print

The distinction between objects that hold shared behavior (traits and mixin objects) and concrete
objects (prototypes, copies of prototypes, and oddballs) is purely a matter of convention; the SELF
language makes no such distinction. While this property (not having special kinds of objects) gives
SELF great flexibility and expressive power, it leads to an interesting problem: the inability to dis-
tinguish behavior that is ready for immediate use from that which is defined only for the benefit of
descendant objects. Put another way: SELF cannot distinguish those objects playing the role of
classes from those playing the role of instances.

The most prominent manifestation of this problem crops up in object printing. Suppose one wishes
to provide the following printString method for al point objects:

printString = (x printString, '@, y printString)

Like other behavior that appliesto all points, the method should be put in point traits. But what
happensif print Stringissenttotheobject traits point?The printStringmethodis
found but it failswhen it attemptsto send x and y to itself because these slots are only defined in
point objects (not thet rai ts poi nt object). Of course there are many other messages defined in
traits point that would also fail if they weresentto traits point rather than to apoint
object. The reason printing is abigger problem isthat it is useful to have a general object printing
facility to be used during debugging and system exploration. To be as robust as possible, this print-
ing facility should not send pri nt St ri ngwhen it will fail. Unfortunately, it is dif ficult to tell
when pri nt Stri nislikely to fail. Using reflection, the facility can avoid sending
print Stri ng to objectsthat do not define pri nt St ri ng. But that isnot thecasewithtraits
poi nt . The solution taken in this version of the system isto mark printable objects with a special
annotation. The printing facility sends pri nt St ri ng to the object only if the object contains an
annotation | sConpl et e.

The existence of ani sConpl et e annotation in an object means that the object is prepared to print
itself. The object agrees to provide behavior for avariety of messages; see the programming envi-
ronment manual for more details.

4.4 How to Return Multiple Values

Sometimesit is natural to think of a method as returning several values, even though S ELF only
allows a method to return a single object. There are two ways to simulate methods that return
multiple values. Thefirst way isto use an inlined object. For example, the object:

(| p* = lobby. lines. words. characters |)

59

SEL F-Styled Programming Substituting Values for Blocks

could be used to package the results of atext processing method into asingle result object:

count = (
| r = (] p* = 1obby. lines. words. characters |) ... |
r: r copy.
r lines: | Count. r words: wCount. r characters: cCount.

r)

Note that the inline object prototype inherits copy from the lobby. If one omitted its parent slot p, one would have
to send it the _Clone primitive to copy it. It is considered bad style, however, to send a primitive directly, rather than
calling the primitive’'s wrapper method.

The sender can extract the various return values from the result object by name.

The second way isto passin one block for each value to be returned. For example:

countLines:[| :n | lines: n]
Wrds:[| :n | words: n]
Characters:[| :n | characters: n]

Each block simply storesitsar gument into the alocal variable for later use. The
count Li nes:Wor ds: Char act er s:method would evaluate each block with the appropriate
value to be returned:

countLines: |b Wrds: wb Characters: cb = (

| b val ue: 1ineCount.
wb val ue: wor dCount.
cb val ue: char Count.

4.5 Substituting Valuesfor Blocks

The lobby includes behavior for the block evaluation messages. Thus, any object that inherits from
the lobby can be passed as a parameter to a method that expects a block—the object behaves like
ablock that evaluates that object. For example, one may write:

x >= 0 ifTrue: x Fal se: x negate
rather than:
x >= 0 ifTrue: [x] False: [X negate]

Note, however, that SELF evaluates all arguments before sending a message. Thus, in the first case
“x negat e” will be evaluated regardless of the value of x, even though that argument will not be
used if x is nonnegative. In this case, it doesn’'t matter, but if “x negat e” had side effects, or if it
were very expensive, it would be better to use the second form.

Inasimilar vein, blocks inherit default behavior that allows one to provide a block taking fewer
arguments than expected. For example, the collection iteration message do: expects a block tak-
ing two arguments: a collection element and the key at which that element is stored. If oneis only

60

SEL F-Styled Programming nil Considered Naughty

interested in the elements, not the keys, one can provide a block taking only one agument and the
second block argument will simply be ignored. That is, you can write:

nyCol | ection do: [| :el | el printLine]
instead of

nyCol | ection do: [| :el. :key | el printLine]

4.6 ni | Considered Naughty

Asin Lisp, SELF has an object called nil, which denotes an undefined value. The virtual machine
initializes any uninitialized dotsto this value. In Lisp, many programs test for nil to find the end
of alist, or an empty slot in a hash table, or any other undefined value. Thereis a better way in
SELF. Instead of testing an object’s identity against ni | , define a new object with the appropriate
behavior and ssimply send messages to this object; SELF's dynamic binding will do the rest. For ex-
ample, in agraphical user interface, the following object might be used instead of nil:

nul | G yph = (|
display = (self).
boundi ngBox = (0@) # (0@) .
nmouseSensitive = fal se.

1)

To make it easier to avoid nil, the methods that create new vectors allow you to supply an aterna-
tivetoni | astheinitial value for the new vector’s elements (e.g., copySi ze: Fil | i ngW t h:).

4.7 Hash and =

Sets and dictionaries are implemented using hash tables. In order for an object to be eligible for in-
clusion in aset or used as akey in adictionary, it must implement both = and hash. (hash maps
an object to asnal | I nt .) Further, hash must be implemented in such away that for objectsa and
b,(a = b)implies(a hash = b hash). Thebehavior that sets disallow duplicates and
dictionaries disallow multiple entries with the same key is dependent upon the correct implemen-
tation of hash for their elements and keys. Finally, the implementation of sets (and dictionaries)
will only work if the hash value of the objects in the set do not change while the objects are in the
set (dictionary). This may complicate managing sets of mutable objects, since if the hash value
depends on the mutabl e state, the objects can not be allowed to mutate while in the set.

Of course, atrivia hash function would simply return a constant regardless of the contents of the
object. However, for good hash table performance, the hash function should map different objects
to different values, ideally distributing possible object values as uniformly as possible across the
range of small integers.

61

SEL F-Styled Programming Equality, Identity, and Indistinguishability

4.8 Equality, Identity, and I ndistinguishability

Equality, identity, and indistinguishability are three related concepts that are often confused. Two
objects are equal if they “mean the same thing”. For example, 3 = 3. 0 even though they are dif-
ferent objects and have different representations. Two objects are identical if and only if they are
the same object. (Or, more precisely, two references are identical if they refer to the same object.)
The primitive _Eq: testsif two objects areidentical. Finally, two objects are indistinguishableif
they have exactly the same behavior for every possible sequence of non-reflective messages. The
binary operator “==" tests for indistinguishability. Identity implies indistinguishability which im-
plies equality.

It isactually not possible to guarantee that two different objects are indistinguishable, since reflec-
tion could be used to modify one of the objects to behave dif ferently after the indistinguisability
test was made. Thus, == is defined to mean identity by default. Mirrors, however, override this de-
fault behavior; (mL == nR)if (nl refl ectee _Eq: n2 reflectee). Thismakesit appear
that there is at most one mirror object for each object in the system. Thisillusion would break
down, however, if one added mutable state to mirror objects.

62

5 Virtual Machine Reference

5.1 Startup options

The following command-line options are recognised by the Virtua Machine:

-f filename

Reads filename (which should contain SELF source) immediately after star-
tup (after reading the snapshot) and evaluates the contents. Useful for set-
ting options, installing personal shortcuts, etc.

Prints a message describing the options

Suppresses execution of the expression snapshot Acti on post Read af-
ter reading a snapshot. Useful if something in the startup sequence causes
the system to break.

Reads initial world from snapshot. A snapshot begins with the line
exec Self -s $0 $@
which causes the Virtual Machine to begin execution with the snapshot.

Don't print warnings about object code

These options are provided for use by SELF VM implementors:

‘F

-l logfile
-r

-1

Discards any machine code saved in the snapshot. If the code in a snapshot
is for some reason corrupted, but the objects are not, this option can be used
to recover the snapshot.

Writes alog of events generated by the spy to lodfile.
Disablesreal timer interrupts

Disables all timers

Other command-line options are ignored by the irtual Machine but are available at SELF level via
the primitive _CommandLi ne.

5.2 System-triggered messages

Certain events cause the system to automatically send a message to the lobby After reading a snap-
shot the expression snapshot Acti on post Readisevauated. This allowsthe SELF world to
reinitialize itself—for example, to reopen windows.

63

SELF Virtual Machine Reference Run-time message lookup errors

There are other situations in which the system sends messages; see section 5.3.

5.3 Run-time message lookup errors

If an error occurs during a message send, the system sends a message to the receiver of the mes-

sage. Any object can handle these errors by defining (or inheriting) a slot with the corresponding
selector. All messages sent by the system in response to a message lookup error have the same ar-
guments. The first argument is the offending message’ s selector; the additional arguments specify
the message send type (oneof ' normal ', " i nplicitSel f’,’ undirectedResend’,’di-
rect edResend’, or '’ del egat ed’), the directed resend parent name or the delegatee (0 if not
applicable), the sending method holder, and a vector containing the arguments to the message, if

any.

e undefi nedSel ect or: Type: Del egat ee: Met hodHol der : Argunent s:
The receiver does not understand the message: no slot matching the selector can be found in
the receiver or its ancestors.

e anbi guousSel ect or: Type: Del egat ee: Met hodHol der : Argunent s:
There is more than one slot matching the selector.

* m ssi ngParent Sel ect or: Type: Del egat ee: Met hodHol der : Argunent s:
The parent slot through which the resend should have been directed was not found in the send-
ing method holder.

* m smat chedAr gunent Count Sel ect or : Type: Del egat ee: Met hodHol der: Argunent s:
The number of arguments supplied to the _Per f or mprimitive does not match the number of
arguments required by the selector.

e perfornlypeErrorSel ector: Type: Del egat ee: Met hodHol der : Argunent s:
The first argument to the _Per f or mprimitive (the selector) wasn't a canonical string.

These error messages are just like any other message. Therefore, it is possible that the object P
causing the error (which is being sent the appropriate error message) does not understand the error
message M either. If this happens, the system sends the first message (undef i nedSel ect or ..) to
the current process, with the error message M as argument. If thisis not understood, then the sys-
tem suspends the process. If the scheduler is running, it is notified of the failure.

The system will also suspend a processif it runs out of stack space (too much recursion) or if a
block is evaluated whose lexically-enclosing scope has already returned. Since these errors are
nonrecoverable they cannot be caught by the same SELF process; the scheduler, if running, is no-
tified.

5.4 Low-level error messages

Five kinds of errors can occur during the execution of a S ELF program: lookup errors, primitive
errors, programmer defined errors, non-recoverable errors, and fatal VM errors. All but the last of
these are usually caught and handled by mechanismsin the programming environment, resulting
in a debugger being presented to the user. However, if programs are run without the programming

SELF Virtual Machine Reference Low-level error messages

environment, or the error-handling mechanisms themselves are broken, low-level error facilities
are used.

This section describes the various error messages presented by the low-level facilities. For each
category or error, the general layout of error messagesin that category will be explained along with
the format of the stack trace. Then a“rogue’s gallery” of the errorsin that category will be shown.

By default, errors are handled by a set of methods defined in moduleer r or Handl i ng. For all er-
rors except nonrecoverable and fatal VM errors, an object can handle errorsin its own way by de-
fining its own error handling methods. If the object in which an error occurs neither inherits nor
defines error handling behavior, the VM prints out alow-level error message and a stack trace. The
system will also resort to this low-level message and trace if an error is encountered while trying
to handle an error.

5.5 An example

Hereis an expression that produces an error in the current system:
“Self 77 100000 factorial

The stack has grown too big.
(Self limts stack sizes, and cannot resune processes with stack overflows.)
To debug type “attach” or to show stack type “zonbies first printError”.

The error arose because the recursive method factorial exceeded the size allocated for the process
stack which resulted in a stack overflow.

The virtual machine currently allocates a fixed-size stack to each process and does not extend the stack on demand.

5.6 Lookup errors

L ookup errors occur when an object does not understand a message that is sent to it. How the ac-
tual message lookup is done is described in the Language Reference Manual.

* No "foo’ slot found in shell <0>.
The lookup found no slot matching the selector f oo.

e More than one 'system slot was found in shell <0>.
The matching slots are: oddballs <6> and prototypes <7>.
The lookup found two matching sy st emslots which means the message is ambig-
uous. The error message al so says where the matching slots were found.
Ambiguities can often be resolved by changing parent priorities.

* No 'fish' delegatee slot was found in <a child of |obby> <12>,
The lookup found no parent slot f i sh, which was explicitly specified as the dele-
gatee of the message.

5.7 Programmer defined errors

These are explicitly raised in the SELF program to report errors, e.g. sending the message f i r st
to an empty list will cause such an error.

65

SELF Virtual Machine Reference Low-level error messages

e Error: first is absent.
Receiver is: list <7>.

Usethe selectorserror: anderror: Argunents: to raise aprogrammer defined error.

5.8 Primitiveerrors

Primitive failures occur when a primitive cannot perform the requested operation, for example, be-
cause of amissing or invalid argument.

e badTypeError: the ' _IntAdd:’ primtive failed.
Its receiver was shell <6>.
The primitive failed with badTypeEr r or because the shell in not an integer.

* The selector 12 could not be sent to shell because it is not a string.
The primitive _Per f or mexpects a string as its first argument.

e The selector 'add:’ could not be sent to shell <0> because it does not
take 2 argunents.
The primitive _Per f or mreceived the wrong number of arguments.

There are many other kinds of possible primitive errors.

5.9 Nonrecoverable processerrors

Errorsthat stop a process from continuing execution are referred to as nonrecoverable errors.

e The stack has grown too big.
(Self 4.0 limts stack sizes, and cannot resume processes with stack
overfl ows.)
A stack overflow error occurs because the current version of S ELF allocates a
fixed size stack for each process, and the stack cannot be expanded.

e Self 4.0 cannot run a block after its enclosing nmethod has returned.
(Self cannot resune this process, either.)
This error occursif ablock is executed after itslexically enclosing method has re-
turned. Thisiscal a“non-LIFO” block. Non-LIFO blocks are not supported by
the current version of SELF.

5.10 Fatal errors

In rare cases, the virtual machine may encounter afatal error (e.g., aresource limit is exceeded or
an internal error is discovered). When this happens, a short menu is displayed:

66

SELF Virtual Machine Reference Theinitial SELF world

VM Version: 4.0.5, Tue 27 Jun 95 13:35:49 Solaris 2.x (svr4)
Internal error: signal 11 code 3 addr 4 pc Oxlac768.

Do you want to:

1) Quit Self (optionally attenpting to wite a snapshot)
2) Try to print the Self stack

3) Try to return to the Self pronpt

4) Force a core dunp

Your choi ce:

Thefirst two lines help the SELF implementors locate the problem. Printing the SELF stack may
provide more information about the problem but does not always work. Returning to the S ELF
prompt may be successful, but the system integrity may have been compromised as aresult of the
error. The safest course is to attempt to write a snapshot (if there are unsaved changes), and then
check the integrity of the snapshot by executing the primitive_Ver i fy after starting it. If there are
any error messages from the primitive, do not attempt to continue using the snapshot.

Since fatal errors usually arise from a bug in the virtual machine, please send the &L F group a bug
report, and include a copy of the error message if possible. If the error is reproducible please de-
scribe how to reproduce it (including a snapshot or source files may be helpful).

5.11 Theinitial SELF world

The diagram on the following pages shows al objectsin the “bare” SELF world. In addition, liter-
aslikeintegers, floats, and strings are conceptually part of theinitial $LF world; block and object
literals are created by the programmer as needed. All the objects in the system are created by add-
ing slots to these objects or by cloning them. Table 1 lists al the initial objects and provides a short
description for each. Reading in the world rearranges the structure of the “bare” SELF world (see
The SELF World)

67

SELF Virtual Machine Reference Theinitial SELF world

lobby snapshotAction
snapshotAction postRead —1— nil
shell ~ shell
systemObjects*) parent* —— lobby
systemObjects / nil
nil —f——®{ parent* —1—P lobby
true — true
false —\ parent* —t— lobby
vector _\-V false
byteVector — parent* ——® lobby
proxy — objVector objVector parent
— * —
fetProxy | parent* —————»| parent — [obby
smiMirror] byteVector byteVector parent
* — * — lobb
floatMirror — parent [®| parent —> y
)] roxy parent
stringMirror proxy proye
) parent* —— P | parent* —t— |obby
processMirror
fctProx fctProxy parent
byteVectorMirror y yP
- parent* —t+—P»| parent* —1— [obby
vectorMirror
assignmentMirror smiMirror
mirrorMirror parent ——» ()
slotsMirror reflectee 0
blockMirror
methodMirror
floatMirror
blockMeth..Mirror
parent* ——» ()
methodAct..Mirror
reflectee 0.0
blockMe..A..Mirror
]
slotAnnotation :
ObjeCtAnnOtatiOn profilerMirror
profilerMirror | parent* —» ()
profiler
proxyMirror
fctProxyMirror

Figure 3 Theinitial SELF world (part 1)

68

SELF Virtual Machine Reference Theinitial SELF world

0 (integers) 0 (integer) parent

parent* —t——®| parent* —+—P» lobby
0.0 (floats) 0.0 (float) parent

parent* —f—®| parent* —+—P» lobby
" (strings) " (string) parent

parent* —f———p»| parent* —— lobby
[] (blocks) [] (block) parent

parent* —f—— | parent* —t—P lobby

value[:{With:}] —r—P» block method

Figure4 Theinitial SELF world (part 2)

69

SELF Virtual Machine Reference

Theinitial SELF world

profiler
mirrors

The prototype for profilers.
See below.

Literals and their parents

integers

0 parent
floats

0.0 parent
canonical strings

" parent
blocks

[] parent
Prototypical mirrors

smiMirror
floatMirror
stringMirror
processMirror
byteVectorMirror
objVectorMirror
assignmentMirror
mirrorMirror
dotsMirror
blockMirror
methodMirror
blockM ethodMirror

Integers have one slot, aparent slot called par ent . All integers have the same parent: seeQ
par ent , below.

All integers share this parent, the integer traits object.

Floats have one dot, aparent slot called par ent . All floats have the same parent: see 0. 0
par ent , below.

All floats share this parent, the float traits object.

In addition to a byte vector part, a canonical string has one slot, par ent , a parent slot con-
taining the same object for all canonical strings (see’ * par ent below).

All canonical strings share this parent, the string traits object.

Blocks have two dots: par ent , aparent slot containing the same object for all blocks (see
[1 parent,below), and val ue (or val ue: , or val ue: Wt h:, etc., depending on the
number of arguments the block takes) which contains the block’s deferred method.

All blocks share this parent, the block traits object.

All of the prototypical mirrors consist of one slot, a parent slot named par ent. Each of
these parent slots points to an empty object (denoted in Figure 3 by “()).

Prototypical mirror on asmall integer; the reflectee is 0.

Prototypical mirror on afloat; the reflectee is 0.0.

Prototypical mirror on a canonical string; the reflectee is the empty canonical string (" ').
Prototypical mirror on a process; the reflectee isthe initial process.

Prototypical mirror on abyte vector; the reflecteeis the prototypical byte vector.
Prototypical mirror on object vectors; the reflectee is the prototypical object vector.
Mirror on the assignment primitive; the actual reflectee is an empty object.
Prototypical mirror on amirror; thereflecteeissl ot sM rror.

Prototypical mirror on aplain object without code; the reflectee is an empty object.
Prototypical mirror on ablock.

Prototypical mirror on anormal method.

Prototypical mirror on ablock method.

methodA ctivationMirror

Prototypical mirror on a method activation.

blockM ethodA ctivationMirror

proxyMirror
fctProxyMirror
profilerMirror

Prototypical mirror on ablock activation.
Prototypical mirror on a proxy.
Prototypical mirror onaf ct Pr oxy.
Prototypical mirror on aprofiler.

70

SELF Virtual Machine Reference Option primitives

5.12 Option primitives
This section has not been updated to include all options present in SELF 4.0.

Option primitives control various aspects of the S ELF system and its inner workings. Many of
them are used to debug or instrument the SELF system and are probably of little interest to users.
The options most useful for users are listed in Table 2; other option primitives can be found in Ap-
pendix 5.B, and alist of all option primitives and their current settings can be printed with the
primitive _PrintOptionPrimtives.

71

SELF Virtual Machine Reference Interfacing with other languages

5.13 Interfacing with other languages

This chapter describes how to access objects and call routines that are written in other languages
than SELF. We will refer to such entities as foreign objects and foreign routines. A typical use
would be to make afunction found in a C library accessible in SELF. Three steps are necessary to
accomplish this:

» Write and compile a piece of “glue”’ code that specifies argument and result types for the
foreign routine and how to convert between these types and SELF objects.

 Link the resulting object code to the SELF virtual machine.

» Create afunction proxy object (actually af or ei gnFct object) that represents the routinein
the SELF world.

Each of these stepsis described in detail in the following sections.

5.13.1 Proxy and fctProxy objects

A foreign object is represented by a proxy object in the S ELF world. A proxy object is an object
that encapsulates a pointer to the foreign object it represents. In addition to the pointer to the for-
eign object, the proxy object contains atype seal. Atype seal is an immutable value that is assigned
to the proxy object, when it is created. The type seal isintended to capture type information about
the pointer encapsulated in the proxy. For example, proxies representing window objects should
have a different type seal than proxies representing event objects. By checking the type seal against
an expected value whenever aproxy is“opened”, many type errors can be caught. The last prop-
erty of proxy objectsisthat they can be dead or live. If an attempt is made to use the pointer in a
dead proxy object, an error results (deadPr oxyEr r or). Proxy objects may be explicitly killed, by
sending the primitive message _Ki | | to them. Furthermore, they are automatically killed after
reading in a snapshot. Thisway problems with dangling references to foreign objects that were not
included in the snapshot are avoided.

FctProxy objects are similar to proxy objects. they have atype seal and are either live or dead.
However, they represent aforeign routine, rather than aforeign object. A foreign routine can be
invoked by sending the primitive messages_Cal | ,_Cal | : {Wth:},_Cal | AndConvert{W't -
h: And: } tothef ct Proxy representing it. Note thatf ct Pr oxy objects are low-level. Most, if not
all, uses of foreign routines should use the interface provided by f or ei gnFct objects.

Proxies (and f ct Pr oxi es) can be freely cloned. However a cloned proxy will be dead. A dead
proxy isrevived when it is used by aforeign function to, e.g., return a pointer. The return value of
the foreign function together with atype sedl is stored into the dead proxy, which is then revived
and returned as the result of the foreign routine call. The motivation for this somewhat complicated
approach is that there will be several different kinds of proxiesin atypical SELF system. Different
kinds of proxies may have different slots added, so rather than having the foreign routine figure out
which kind of proxy to clone for the result, the S ELF code calling the foreign routine must con-
struct and pass down an “empty” (dead) proxy to hold the result. This proxy is called aesult proxy
and it isthe last argument supplied to the foreign function.

72

SELF Virtual Machine Reference Interfacing with other languages

5.13.2 Gluecode

Glue code isresponsible for the transition from SELF to foreign routines. It forms wrappers around
foreign routines. Thereis one wrapper per foreign routine. A wrapper takes a number of aguments
of type oop, and returns an oop (oop isthe C++ type for “referenceto S ELF object”). When a
wrapper is executed, it performs the following steps:

1. Check that the arguments supplied have the correct types.

2. Convert the arguments from S ELF representation to the representation that the foreign
routine needs.

3. Invoke the foreign routine on the converted arguments.

4. Convert the return value of the foreign routineto aS ELF object and return this as the
SELF level result.

To make it easier to write glue code, a special purpose language has been designed for this. The
result isthat glue for aforeign routine will often consist of only asingleline. The glue languageis
implemented as a set of C++ preprocessor macros. Therefore, glue code isjust a (rather peculiar)
kind of C++. Glue code can be in afile of itsown, or —if it isglue for calling C++ routines— it can
be in the same file as the foreign routines, and compiled with them.

To make the definition of the glue language available, the file containing glue code must contain:
include " _glueDefs.c.incl"

Thefile“_glueDefs.c.incl” includes a bunch of C++ header files that contain all the definitions
necessary for the glue. Of the included files, “glueDefs.h” is probably the most interesting in this
context. It defines the glue language and also contains some comments explaining it.

Since different foreign languages have different type systems and calling conventions the glue lan-
guage is actually not a single language, but one for each supported foreign language. Presently C
and C++ are supported. Section 5.13.5 describes C glue and section 5.13.9 describes C++ glue.

5.13.3 Compiling and linking glue code

Since glue code is a special form of C++ code, a C++ compiler is needed to trandlate it. The way
thisis done may depend on the computer system and the available C++ compiler . The following
description applies to Sun SPARCstations using the GNU g++ compiler.

A specific example of how to compile glue code can be found in the directory containing thetoself
demo (see section 5.13.16 for further details). The makefile in that directory describes how to

translate a . ¢ file containing glue into something that can be invoked from S ELF. Thisisatwo
stage process:. first the . c fileiscompiled into a . o file which is then linked (perhaps with other
. o filesand libraries that the glue code depends on)T into a. so file (aso-caled dynamic library).
While the compilation is straightforward, several issues concerning the linking must be explained.

+ o a . (RN .] [.] [[. ~—— .

73

SELF Virtual Machine Reference Interfacing with other languages

Linking. Before aforeign routine can be called it must be linked to the SELF virtual machine. The
linking can be done either statically, i.e. before SELF is started, or dynamically, i.e. while SELFis
running. The SELF system employs both dynamic and static linking, but users should only use dy-
namic linking, as static linking requires more understanding of the structure of the V irtual Ma-
chine. The choice between dynamic and static linking involves atrade-of f between safety and
flexibility as outlined in the following.

Dynamic linking has the advantage that it is done on demand, so only foreign routines that are ac-
tually used in a particular session will be loaded and take up space. Debugging foreign routinesis
also easier, especialy if the dynamic linker supports unlinking. The main disadvantages with dy-

namic linking is that more things can go wrong at run time. For example, if an object file contain-
ing aforeign routine can not be found, arun time error occurs. The Sun OS dynamic linker, 1d.so,
only handles dynamic libraries which explains why the second stage of glue tranglation is neces-

sary.

Satic linking, the alternative that was not chosen for SELF, has the advantage that it needs to be
done only once. The statically linked-in files will then be available for ever after. The main disad-
vantages are that the linked-in files will always take up space whether used or not in agiven ELF
session, that the VM must be completely relinked every time new code is added, and that debug-
ging is harder because there is no way to unlink code with bugs in. For these reasons the following
examples all use dynamic linking.

5.13.4 A simple glue example: calling a C function

Suppose we have a C function that encrypts text strings in some fancy way It takes two aguments,
astring to encrypt and a key, and returns a string which is the result of the encryption. To use this
function from SELF, we write aline of C glue. Here isthe entirefile, “encrypt.c”, containing both
the encryption function and the glue: T

/* Make glue available by including it. */
include "incls/_glueDefs.c.incl"

/* Naive encryption function. */
char *encrypt(char *str, int key) {
static char res[1000];

int i;

for (i = 0; str[i]; ++i)
res[i] = str[i] + key;

res[i] ="'\0";

return res;

74

SELF Virtual Machine Reference Interfacing with other languages

/* Make glue expand to full functions, not just prototypes. */
defi ne WHAT_GLUE FUNCTI ONS

C func_2(string,, encrypt, encrypt_glue,, string,, int,)
undef WHAT _GLUE

A few words of explanation: the last three lines of this file contain the glue code. First defining
WHAT _GLUE to be FUNCTI ONS, makes the following line expand into a full wrapper function (de-
fining WHAT _GLUE to be PROTOTYPES instead, will cause the C_f unc_2 lineto produce a func-
tion prototype only). The line containing the macroC_f unc_2 isthe actual wrapper forencr ypt .
The“2” designatesthat encr ypt takes 2 arguments. The meaning of the arguments, from left to
right are:

* “string,”: specifiesthat encr ypt returns astring argument.
* “encrypt”: name of function we are constructing wrapper for.
* “encrypt _gl ue”: name that we want the wrapper function to have.

* Anempty argument signifying that encrypt is not to be passed a failure handle (explained
later).

* “string,”: specifiesthat the first argument to encr ypt isastring.
* “int,”: specifiesthat the second argument to encr ypt isanint.

Having written this file, we now prepare a makefile to compile and link it. To do this, we can ex-
tend the makefilein obj ect s/ gl ue/ { sun4, svr 4¥depending on OSin use) and then run
make. Thisresultsin the shared library file encr ypt . so. Finaly, to try it out, we can type these
commands (at the SELF prompt or in the Ul):

> _AddSl otslfAbsent: (| encrypt |)
| obby

> encrypt: (foreignFct copyNanme: 'encrypt gl ue’
Path: 'encrypt.so’)
| obby

> encrypt
<C++ function(encrypt_glue)>

> encrypt value: "Hello Self’ Wth: 3
" Khoor #Vhoi ’

> encrypt val ue: 'Khoor#Vhoi’' Wth: -3
"Hell o Sel f’

Comparing the signature for the function encr ypt with the argumentsto the C_f unc_2 macro it
is clear that there is a straightforward mapping between the two. One day we hope to find the time
to write a SELF program that can parse a C or C++ header file and generate glue code correspond-
ing to the definitions in it. In the meantime, glue code must be handwritten.

75

SELF Virtual Machine Reference Interfacing with other languages

5.13.5 Cglue

C glue supports accessing C functions and data from SELF. There are three main parts of C glue:
» Cadling functions.
» Reading/assigning global variables.
» Reading/assigning a component in a struct that is represented by a proxy object in SELF.

In addition, C++ glue for creating objects can be used to create C structs (see section 5.13.9). The
following sections describe each of these parts of C glue.

5.13.6 Calling C functions

ThemacroC func_NwhereNisO0, 1, 2, ... isused to “glue in” a C function. The numbeiN denotes
the number of arguments that should be given at the SELF level, when calling the function. This
number may be different from the number of arguments that the C function takes since, e.g., some
argument conversions (see below) produce two C ar guments from one SELF object. Hereis the
genera syntax for C_f unc_N:

C func_N(res_cnv,res_aux, fexp, gfname, fail _opt, c0,a0, ... cN aN)

Compare this with the glue that was used in the encrypt examplein section 5.13.4:

C func_2(string,, encrypt, encrypt_glue,, string,, int,)

The meaning of each argument to C _f unc_Nisasfollows:

* res_cnv, res_aux these two arguments form a“conversion pair” that specifies how the
result that the function returnsis convertedto aS ELF object. Inthe encr ypt example,
where the function returns a null terminated string, res_cnv hasthevaue stri ng, and
res_aux isempty. Table 3listsall the possible valuesfor ther es_cnv, res_aux pair.

» fexp isaC expression which evaluates to the function that is being glued in. In the simplest
case, such asintheencr ypt example, the expression is the name of afunction, but in gen-
eral it may be any C expression, involving function pointers etc., which in aglobal context
evaluates to afunction.

» gf name: the name of the function which the C_f unc_Nmacro expandsinto. Inthe en-
crypt example, the convention of appending _gl ue to the C function’s name was used.
When accessing a glued-in function from SELF, the value of gf nane isthe name that must
be used.

» fail _opt: there aretwo possible values for this argument. It can be empty (asin the exam-
ple) or it can be f ai | . In the latter case, the C function being called is passed an additional
argument that will bethe last argument and have type “voi d *”. Using this argument, the C
function may abort its execution and raise an exception. The result is that the “IfFail block”
in SELF will be invoked.

76

SELF Virtual Machine Reference Interfacing with other languages

* ci, ai:each of these pairs describes how to convert a SELF level argument to one or more
Cleve arguments.Jr For example, in the gluefor encr ypt , c0, a0 specifiesthat thefirst ar-
gument toencr ypt isastring. Likewisec1, al specifiesthat the second argument isan in-
teger. Note that in both these cases, the a-part of the conversion is empty. Table 3 lists all
the possible values for theci , ai pair.

Handling failures. Here is a slight modification of the encryption example to illustrate how the C
function can raise an exception that causes the “IfFail block” to be invoked at the SELF level:

/* Make glue available by including it. */
include "incls/_glueDefs.c.incl"

/* Naive encryption function. */
char *encrypt(char *str, int key, void *FH) {
static char res[1000];
int i;
if (key == 0) {
failure(FH, "key == 0 is identity map");
return NULL;

}

for (i = 0; str[i]; i++)
res[i] = str[i] + key;

res[i] ="\0

return res;

}

/* Make glue expand to full functions, not just prototypes. */
define WHAT_GLUE FUNCTI ONS

C func_2(string,, encrypt, encrypt_glue, fail, string,, int,)
undef VWHAT _GLUE

Observe that the f ai | _opt argument now hasthevalue f ai | and that the encr ypt function
raises an exception, using f ai | ur e, if thekey is0. There are two ways to raise exceptions:

extern "C' void failure(void *FH, char *nsQ);

extern "C' void unix_failure(void *FH, int err = -1);

In both cases, the FHargument is the “failure handle” that was passed by the C_f unc_Nmacro.
The second argument to f ai | ur e isastring. It will be passed to the “IfFail block” in SELF. un-

i x_fail ure takesan optional integer as its second argument. If thisinteger has the value -1, or
ismissing, the value of er r no isused instead. The integer isinterpreted as a UNIX error number,
from which a corresponding string is constructed. The string isthen, asforf ai | ur e, passed to the
“IfFail block” at the call sitein SELF.

A word of warning: after calling f ai | ur e or uni x_f ai | ureanormal r et ur n must be done.
The value returned (in the example NULL) isignored.

77

SELF Virtual Machine Reference Interfacing with other languages

5.13.7 Reading and assigning global variables

Reading the value of aglobal variable isdone using the C_get _var macro. Assigning avaueto

aglobal variableisdoneusingC_set _var . Both macros expand into a C++ function that converts

between SELF and C representation, and reads or assigns the variable. Here is the general syntax:
C get _var(cnvt_res,aux_res, expr, gfnane)

C set_var(var, expr_c0, expr_a0, gfnane)
A concrete example is reading the value of the variable er r no, which can be done using:
C get _var(int,, errno, get_errno_glue)

The meaning of the each argument is:

e cnvt _res, aux_res: how to convert the value of the global variable that isbeing read to a
SELF object. Inthe er r no example, cnvt _resisint and aux_r es isempty, since the
typeof errnoisint. Thecnvt _res, aux_r escan be any one of the result conversions
found in Table 3.

* expr isthevariable whose valueis being read. In the er r no example, itissimply er r no,
but in general, it may actually be any expression that isvalid in aglobal context, even an ex-
pression involving function calls.

» gf nane: the name of the C++ function that C_get _var or C_set _var expandsinto.

* var isthe name of aglobal variable that avalueis assigned to. In general, var , may be any
expression that in aglobal context evaluates to an |-value.

* expr_cO0, expr_aQ when assigning to avariable, the value it is assigned is obtained by
converting a SELF object to a C value. The expr _c0, expr _a0 pair, which can be any one
of the argument conversions listed in Table 3, specifies how to do this conversion.

5.13.8 Reading and assigning struct components

Reading the value of a struct component or assigning avalueto it is similar to doing the same op-
erations on aglobal variable. The differenceis that the struct must somehow be specified. Thisis
taken care of by the macros C_get _conp and C_set _conp. The general syntax is:

C get _conp(cnvt _res,aux_res, cnvt_strc,aux_strc, conp, gfnane)

C set_conp(cnvt _strc, aux_strc, conp, expr_cO, expr_a0, gfnane)
Hereis an example, assigning to the si n_port field of astruct sockaddr _i n (thisstruct isde-
finedin/usr/incl ude/ netinet/in. h):

struct sockaddr_in {

short sin_famly;
u_short sin_port;
struct in_addr si n_addr;
char sin_zero[8];

78

SELF Virtual Machine Reference Interfacing with other languages

The struct is represented by a proxy object:
char *socks = "type seal for sockaddr_in proxies"”;

C _set _conp(proxy, (sockaddr _in *,socks), .sin_port, short,,
set _sin_port_gl ue)

Thesockaddr _i n example definesafunction,set _si n_port _gl ue, which can be called from
SELF. The function takes two ar guments, the first being a proxy representing a sockaddr _i n
struct, the second being a short integer. After converting types, set _si n_port _gl ue performs
the assignment

(*first_converted arg).sin_port = second _converted_arg.

In general the meaning of the C_get _conp and C_set _conp argumentsis:

* cnvt _res, aux_res how to convert the value of the component that is being read to a
SELF object. Any of the result conversions found in Table 3 may be applied.

* cnvt_strc, aux_strc: theconversion that is applied to produce a struct upon which the
operation is performed. In the si n_port example, this conversion is a proxy conversion,
implying that in SELF, the struct whosesi n_port component is assigned is represented by
aproxy object. In general, any of the argument conversions from Table 3 that resultsin a
pointer, may be used.

» conp isthe name of the component to be read or assigned. In the sin_port example, this

nameis*“.si n_port”. Notethat it includesa“ . ”. This, e.g., alows handling pointersto
i nt’sby pretending that it is a pointer to a struct and operating on a component with an
empty name.

» gf nane: the name of the C++ function that C_get conp or C_set _conp expandsinto.

* expr_co, expr _a0: when assigning to a component, the value it is assigned is obtained by
converting a SELF object to a C value. The expr _co, expr _a0 pair, which can be any one
of the argument conversions listed in Table 3, specifies how to do this conversion.

5.13.9 C++glue

Since C++ isasuperset of C, al of C glue can be used with C++. In addition, C++ glue provides
support for:

» Constructing objects using the new operator.

» Deleting objects using the del et e operator.

» Calling member functions on objects.

Each of these parts will be explained in the following sections.

79

SELF Virtual Machine Reference Interfacing with other languages

5.13.10 Constructing objects

In C++, objects are constructed using the new operator. Constructors may take ar guments. The
macros CC_new_Nwhere Nisasmall integer, support calling constructors with or without ar gu-
ments. Calling a constructor is similar to calling afunction, so for additional explanation, please
refer to section 5.13.6. Here isthe general syntax for constructing objects using C++ glue:

CC new _N(cnvt _res, aux_res, class, gfname, c0,a0, cl,al, ... cN, aN)
For example, to construct asockaddr _i nt object, the following glue statement could be used:
CC _new _O(proxy, (sockaddr _in *,socks), sockaddr _in, new sockaddr _in)

The meanings of the CC_new_N arguments are as follows:

* cnvt_res, aux_r es theresult of calling the constructor is an object pointer. The result
conversion pair cnvt _res, aux_r es (see Table 3), specifies how this pointer is converted
to a SELF object before being returned. In the sockaddr example, the proxy result conver-
sionis used.

* cl ass isthe name of the class (or struct) that is being instantiated.
» gf nane: the name of the C++ function that the CC_new_N macro expands into.

* ci, ai: if the constructor takes arguments, these arguments must be converted from S ELF
representation to C++ representation. The arguments conversion pairs ci , ai specify how
each argument is converted. See Table 3 for adescription of all argument conversions. In
the sockaddr example, there are no arguments.

5.13.11 Deleting objects

C++ objects can have destructors that are executed when the objects are deleted. To ensure that the
destructor is called properly, the del et e operator must know the type of the object being del eted.
Thisisensured by using the CC_del et e macro, which has the following form:

CC _del et e(cnvt _obj, aux_obj, gf nane)

For example, to deletesockaddr _i n objects (constructed as in the previous section), theCC_de-
| et e macro should be used in this manner:

CC _del et e(proxy, (sockaddr _in *,socks), del ete_sockaddr _in)

In general, the meaning of the arguments givento CC _del et e is:

* cnvt _obj, aux_obj: thispair can be any of the argument conversions found in Table 3
that produces a pointer to the object that will be deleted.

» gf nane: the name of the C++ function that thisinvocation of CC_del et e expands into.

80

SELF Virtual Machine Reference Interfacing with other languages

5.13.12 Calling member functions

Calling member functionsis similar to calling “plain” functions, so please also refer to section

5.13.6. The differenceis that an additional object must be specified: the object upon which the

member function isinvoked (the receiver in SELF terms). Calling a member function is accom-
plished using one of the macros

CC nber _N(cnvt _res,aux_res, cnvt_rec, aux_rec, nnane, gfnane,
fail _opt, c0,a0, cl,al, ..., cN aN

For example hereis how to call the member function zock onasockaddr _i n object given by a
proxy:"
CC nber _0(bool,, proxy, (sockaddr_in *,socks), zock, zock_glue,)

The argumentsto CC_nber _Nare:

e cnvt _res, aux_res: thispair, which can be any of the result conversions from Table 3,
specifies how to convert the result of the member function before returning it to SELF. For
example, the zock member function returns a boolean.

e cnvt_rec, aux_r ec: the object on which the member function isinvoked. Often thiswill
be a proxy conversion asin thezock example.

* mmane isthe name of the member function. In general, it may be any expression, such that
recei ver - >mane evaluates to afunction.

» gf nane isthe name of the C++ function that the CC_nber _N macro expands into.

o fail_opt:whether or not to pass afailure handle to the member function (refer to section
5.13.6 for details).

* ci ,ai : these are argument conversion pairs specifying how to obtain the arguments for the
member function. Any conversion pair found in Table 3 may be used.

5.13.13 Conversion pairs

A major function of glue code isto convert between SELF objects and C/C++ values. This conver-
sion is guarded by so-called conversion pairs. A conversion pair isapair of arguments given to a
glue macro. It handles converting one or at most afew types of objects/values. There are different
conversion pairs for converting from SELF objects to C/C++ values (called argument conversion
pairs) and for converting from C/C++ values to SELF objects (called result conversion pairs).

5.13.14 Argument conversions—from SELF to C/C++

An argument conversion is given a SELF object and performs these actions to produce a corre-
sponding C or C++ value:

81

SELF Virtual Machine Reference Interfacing with other languages

 check that the SELF obj ect! it has been given is among the allowed types. If not, report
badTypekEr r or (invoke the failure block (if present) with the argument ’ badTypeEr -
ror’).

* check that the object can be converted to a C/C++ value without overflow or any other error.
If not, report the relevant error.

* do the conversion, i.e., construct the C/C++ value corresponding to the given SELF object.

Table 3 lists all the available argument conversions. Each row represents one conversion, with the
first two columns designating the conversion pair. The third column lists the types of SELF objects
that the conversion pair accepts. The fourth column lists the C types that it produces. The fifth col-
umn lists the kind of errors that can occur during the conversion. Finally the sixth column contains
references to numbered notes. The notes are found in the paragraphs following the table.

82

SELF Virtual Machine Reference Interfacing with other languages

Table 3 : Argument conversions - from SELF to C/C++

: Second
Conversion part SELFtype | C/C++ type Errors Notes

unsigned long smallint unsigned long | badSignError

smi smallint smi badTypeError 2

unsigned_smi smallint smi badSignError 2
badTypeError

float float float badTypeError 3

double float double badTypeError 3

long_double float long double badTypeError 3

bv ptr_type byte vector ptr_type badTypeError 4

bv_len ptr_type byte vector ptr_type, int badSizeError 4,5
badTypeError

bv_null ptr_type byte vector/0 ptr_type badTypeError 4,6

bv_len_null ptr_type byte vector/0 ptr_type, int badSizeError 4,56
badTypeError

cbv ptr_type byte vector ptr_type badTypeError 7

cbv_len ptr_type byte vector ptr_type, int badSizeError 7
badTypeError

cbv_null ptr_type byte vector/0 ptr_type badTypeError 7

cbv_len_null ptr_type byte vector/O ptr_type, int badSizeError 7
badTypeError

string byte vector char * badTypeError 8
nullCharError

string_len byte vector char *, int badTypeError 5,8
nullCharError

string_null byte vector/0O char * badTypeError 6,8
nullCharError

string_len_null byte vector/0O char *, int badTypeError 56,8
nullCharError

proxy (ptr_type, proxy ptr_type, badTypeError 9

type_sedl) I=NULL badTypeSeal Error

deadProxyError,
nullPointerError

proxy_null (ptr_type, proxy ptr_type badTypeError 9

type_seal) badTypeSeal Error

deadProxyError

any_oop any object oop 10

83

SELF Virtual Machine Reference Interfacing with other languages

Table 3 : Argument conversions - from SELF to C/C++

. Second
Conversion part SELFtype | C/C++ type Errors Notes
oop oop subtype | corresponding | oop (subtype) | badTypeError 11
object
any C/C++type | int/float/proxy/ | int/float/ptr/ badlndexError 12
byte-vector, int | ptr badTypeError
deadProxyError

1. The C type char has a system dependent range. Either 0..255 or -128..127.
2. Thetypesm isusedinternaly in the virtua machine (a 30 bit integer).
3. Precision may be lost in the conversion.

4. The second part of the conversion is a C pointer type. The address of the first byte in the byte
vector, cast to this pointer type, is passed to the foreign routine. It is the responsibility of the for-
eign routine not to go past the end of the byte vector The foreign routine should not retain pointers
into the byte vector after the call has terminated. Note: canonical strings can not be passed through
abv conversion (badTypeEr r or will result). Thisisto ensure that they are not accidentally mod-
ified by aforeign function.

5. This conversion passes two values to the foreign routine: a pointer to the first byte in the byte
vector, and an integer which is the length of the byte vector divided by si zeof (*ptr _type). If
the size of the byte vector is not amultiple of si zeof (*ptr_t ype), badSi zeEr r or results.

6. In addition to accepting a byte vector , this conversion accepts the integer O, in which case a
NULL pointer is passed to the foreign routine.

7. Thecbv conversions are like thebv conversions except that canonical strings are allowed as ac-
tual arguments. A cbv conversion should only be used if it is guaranteed that the foreign routine
does not modify the bytes it gets a pointer to.

8. All the string conversions take an incoming byte vector, copy the bytes part, add atrailing null
char, and pass a pointer to this copy to the foreign routine. After the call has terminated, the copy
isdiscarded. If the byte vector contains a null char, nul | Char Er r or results.

9. Thet ype_seal isanint orchar * expression that istested against the type seal valuein the
proxy. If thetwo are different, badTypeSeal Er r or results. The special value ANY_SEAL will

match the type seal in any proxy. Note that the pr oxy conversion will fail with nul | Poi nt er -

Err or if the proxy object it is given encapsulates a NULL pointer.

10. Theany_oop conversion is an escape: it passes the ELF object unchanged to the foreign rou-
tine.

11. The oop conversion is mainly intended for internal use. The second ar gument is the name of
an oop subtype. After checking that the incoming ar gument points to an instance of the subtype,
the pointer is cast to the subtype.

12. The any conversion is dif ferent from all other conversionsin that it expects two incoming

SELF objects. The actions of the conversion depends on the type of the first object in the following
way. If the first object is an integer, the second argument must also be an integer; the two integers
are converted to Ci nt ’s, the second is shifted 16 bits to the left and they are or ed together to pro-

SELF Virtual Machine Reference Interfacing with other languages

duce the result. If the first object isafloat, it isconvertedtoaC f 1 oat and the second object is
ignored. If thefirst object is a proxy, the result is the pointer represented by the proxy, and the sec-
ond argument isignored. If the first object is a byte vector , the second object must be an integer
which isinterpreted as an index into the byte vector; the result is a pointer to the indexed byte.

5.13.15 Result conversions - from C/C++to SELF

A result conversion is given aC or C++ value of a certain type and performs these actions to pro-
duce a corresponding SELF object:

» check that the C/C++ value can be converted to a SELF object with no overflow or other er-
ror occurring. If not, report the error.

» dothe conversion, i.e., construct the SELF object corresponding to the given C/C++ value.

Table 4 lists all the available result conversions. Each row represents one conversion, with the first
two columns designating the conversion pair. The third column lists the type of C or C++ value
that the conversion pair accepts. The fourth column lists the type of S ELF object the conversion
produces. The fifth column lists the kind of errors that can occur during the conversion. Finally the
sixth column contains references to numbered notes. The notes are found in the paragraphs follow-
ing the table.

Table 4 : Result conversions - from C/C++to SELF

Conversion S%cac;?d C/C++type | SELFtype Errors Notes
void void smallint (0)

bool int boolean

char char smalllnt

signed_char signed char smalllnt

unsigned_char unsigned char | smallint

short short smalllnt

signed_short signed short smalllnt

unsigned_short unsigned short | smalllnt

int int smalllnt overflowError
signed_int signed int smalllnt overflowError
unsigned _int unsigned int smalllnt overflowError
long long smalllnt overflowError
signed_long signed long smalllnt overflowError
unsigned_long unsigned long | smallint overflowError

85

SELF Virtual Machine Reference Interfacing with other languages

Table 4 : Result conversions - from C/C++to SELF

. Second
Conversion part C/C++type | SELFtype Errors Notes
smi smi smallint overflowError
int_or_errno n int int aUNIX error 1
float float float 2
double double float 2
long_double long double float 2
string char * byte vector null PointerError 3
proxy (ptr_type, ptr_type proxy null PointerError 3,4,8
type_seal)
proxy_null (ptr_type, ptr_type proxy 4,8
type_seal)
proxy_or_errmn | (ptr_type, ptr_type proxy aUNIX error 4,58
o} type_sedl,
n)
fct_proxy (ptr_type, ptr_type fctProxy null PointerError 3,6,8
type_sed,
arg_count)
fct_proxy _null | (ptr_type, ptr_type fctProxy 6,8
type_sedl,
arg_count)
oop oop corresponding 7,8
object

1. This conversion returns an integer value, unless the integer has the value n (the second part of
the conversion; often -1). If the integer is n, the conversion interprets the return value as a U NIX
error indicator. It then constructs a string describing the error (by looking a er r no) and invokes
the “IfFail block” with this string.

2. Precision may be lost.
3. This conversion failswith nul | Poi nt er Er r or if attempting to convert aNULL pointer.

4. Thept r _t ype isthe C/C++ type of the pointer. Thet ype_seal isan expression of typei nt
or char *. The conversion constructs a new proxy object, stores the C/C++ pointer in it and sets
itstype seal to bethevaueof t ype_seal .

5. If the pointer is n (often n is NULL), the conversion failswith a UNIX error, similar to the way
i nt _or _errno may fail.

6. The fct _proxy, fct_proxy_nulland fct_proxy_or_errnoconversionsare similar to
the corresponding proxy conversions. The differenceis that they produce af ct Pr oxy object rath-
er than a proxy object. Also, their second part is atriple rather than apair . The extra component
specifies how many arguments the function takes, if called. The special keyword unknownNoO-
f Ar gs or any nonnegative integer expression can be used here.

86

SELF Virtual Machine Reference Interfacing with other languages

7. Thisconversion is an escape: it passes the C value unchanged to SELF. It isan error to use it if
the C value is not an oop.

8. Thepr oxy (f ct Proxy) object that is returned by these conversionsisnot being created by the
glue code. Rather a pr oxy (f ct Pr oxy) must be passed down from the SELF level. This pr oxy
(f ct Proxy), aresult proxy, will then be side effected by the glue: the value that the foreign func-
tion returns will be stored in the result proxy together with the requested type sedl. It is required
that the result proxy is dead when passed down (elsea | i vePr oxyEr r or results). After being
side-effected and returned, the result proxy islive. The result proxy isthelast ar gument of the
function that the glue macro expands to.

5.13.16 A complete application using foreign functions

This section gives a description of a complete application which uses foreign functions. The am
isto present areadlistic and complete example of how foreign functions may be used. The complete
source for the example isfound in the directory obj ect s/ appl i cati ons/ server Denpinthe
SELF distribution.

The example used is an application that allows SELF expressions to be easily evaluated by non-
SELF processes. Having this, it then becomes possible to start S ELF processes from aU NIX
prompt (shell) or to specify pipe linesin which some of the processes are SELF processes. For ex-
amplein

proto% cat sonmeFile | tokenize | sort -r | capitalize | tee |Ist

it may be the case that thefilterst okeni ze andcapi t al i ze perform most of their work in SELF.
Likewise, the command

pr ot 0% i |
may invoke some fancy mail reader written in SELF rather than the standard UNIX mail reader.

To see how the above can be accomplished, please refer to Figure 3 below. The left side of the fig-
ure shows the external view of atypical UNIX process. It has two files: stdin and stdout (for sim-
plicity we ignore stderr). Stdin is often connected to the keyboard so that characters typed here can
be read from the file stdin. Likewise, stdout istypically connected to the console so that the process
can display output by writing it to the file stdout. Stdin and stdout can aso be connected to “regu-
lar” files, if the process was started with redirection. The right side of Figure 3 shows atwo stage
pipe line. Here stdout of the first process is connected to stdin of the second process.

. wc . Is . wC
stdin stdout stdin I stdout >G)stdln > stdout I

Figure5. A single UNIX process and an pipeline

87

SELF Virtual Machine Reference Interfacing with other languages

Figure 3 illustrates a simple trick that in many situations allows S ELF processes to behave as if
they are full-fledged UNIX processes. A SELF processis represented by a“real” U NIX process
which transparently communicates with the SELF process over a pair of connected sockets. The
communication is bidirectional: input to the UNIX processisrelayed to the SELF process over the
socket connection, and output produced by the SELF process is sent over the same socket connec-
tion to the UNIX process which relaysiit to stdout. The right part of Figure 3 shows how the LNIX/
SELF process pair can fit seamlessly into a pipeline.

. Is . capitalize
stdin I stdout >® stdin > stdout
Self VM * Self VM +
capitalize: capitalize:
stdio stdio

Figure6. A SELF processand how it fitsinto a pipeline

Source code that facilitates setting up such UNIX/SELF process pairsisincluded in the SELF dis-
tribution. The source consists of two parts: one being a SELF program (called server), the other be-
ing a C++ program (called toself). When the server is started, it creates a socket, binds a name to

it and then listens for connectionsonit. t osel f establishes connections to the server program.

Thefirst line that is transmitted when a connection has been set up goesfront osel f to the server.
The line contains a SELF expression. Upon receiving it, the server forks anew process to evaluate
the expression in the context of the lobby augmented with asot, stdio, that contains auni xFi | e-
like object that represents the socket connection. When the forked process terminates, the socket

connection is shut down. Thet osel f UNIX process then terminates.

The SELF expression that forms the SELF process is specified on the command line whent osel f
is started. For example, if the server has been started, the following can be typed at the U NIX
prompt:

proto%toself stdio witeLine: 5 factorial printString
120

prot 0% echo sonmething | toself capitalize: stdio
SOVETHI NG

proto% toself capitalize: stdio

Wite sone text that goes to stdin of the toself program
VWRI TE SOVE TEXT THAT GOES TO STDIN OF THE TOSELF PROGRAM
More text

MORE TEXT

D

88

SELF Virtual Machine Reference Interfacing with other languages

pr ot 0%

If you want to try out these examples, locate the filesser ver . sel f ,socks. so andt osel f . The
path name of thefilesocks. so ishardwired in thefileser ver. sel f so please make sure that it
has been set correctly for your system. Then file in theworld and type[server start] fork at
the SELF prompt. Now you can go back to the U NIX prompt and try out the examples shown
above.

5.13.17 Outlineof t osel f

t osel f isasmall C++ program found in thefile t osel f . c. It operatesin the three phases out-
lined above:

1. Try to connect to awell-known port number on a given machine (the function est ab-
| i shConnect i on doesthis).

2. Send the command line arguments over the connection established in 1 (the saf eWite
cal in mai n doesthis).

3. While there is more input and the SELF process has not shut down the socket connection,
relay from stdin to the socket connection and from the socket connection to stdout (the func-
tionr el ay doesthis).

5.13.18 Outline of server

The server isa SELF program. It isfound in thefileser ver . sel f . When the server is started, the
following happens:

1. Create a socket, bind anameto it and start listening.

2. Loop: accept a connection and fork a new process (both step 1 and 2 are performed by the
method ser ver st art). Theforked process executes the method ser ver handl eRequest
which:

a. Reads aline from the connection.

b. Sets up a context with aslot st di o referring to the connection.
c. Evaluatesthe lineread in step (a) in this context.

d. Closes the connection.

5.13.19 Foreign functions and glue needed to implement server

The server program needs to do anumber of UNIX callsto create sockets and bind names to them
etc. The calls needed aresocket , bi nd, | i st en, accept andshut down. Thefirst three of these
are only called in afixed sequence, so to make things easier , asmall C++ function socket -
bi nd_I i st en, that bundles them up in the right sequence, has been written. Theaccept function
is more general than what is needed for this application, so awrapper function,si npl e_accept ,
has been written. The result is that the server needsto call only three foreign functions:socket _-
bi nd_I i st en, si npl e_accept and shut down. Glue for these three functions and the source

89

SELF Virtual Machine Reference Interfacing with other languages

for thefirst two isfound in the filesocks. c. Thisfileis compiled and linked using thevakefi | e.
The result is a shared object file, socks. so.

5.13.20 Useof foreign functionsin server.self

The server program isimplemented using f or ei gnFct objects. Thereisonly afew lines of code
directly involved in setting this up. First the f or ei gnFct prototypeis cloned to obtain a*“local

prototype”, called socksFct , which contains the path for the socks. so file. socksFct isthen
cloned each time af or ei gnFct object for afunction defined insocks. so is needed. For exam-
ple,intraits socket, thefollowing method is found:

copyPort: portNunber = ("Create a socket, do bind, then listen."
| sbl = socksFct copyNane: ’'socket _bind listen glue' . |
sbl val ue: portNunber Wth: deadCopy.

) -

This method copiesa socket object and returnsthe copy. Thelocal slot sbl isinitialized to a
f or ei gnFct object. The body of the method simply sends val ue: Wt h: tothe f or ei gnFct
object. The first argument is the port number to request for the socket, the second ar gument isa
deadCopy of self (socket objects are proxiesand socket _bi nd_I i st enreturnsaproxy, so it
must be passed a dead proxy to revive and store the result in; see section 5.13.1).

There are only three uses of f or ei gnFct objectsin the server and in all three cases, the f or -
ei gnFct object is encapsulated in amethod as illustrated above.

In general the design of f or ei gnFct objects has been aimed at making the use of them light
weight. When cloning them, it is only necessary to specify the minimal information: the name of
the foreign function. They can be encapsulated in a method thus localizing the impact of redesigns.
The complications of dynamic loading and linking are handled automatically, as is the recovery of
dead f ct Pr oxi es.

90

SELF Virtual Machine Reference The system monitor

Appendix 5.A The system monitor

The SELF system contains a system monitor to display information about the internal workings of
the system such as memory management and compilation. It isinvoked with_Spy: true (there
isare shortcutsin the shell, spyOn and spyOf f). When it is active, the system monitor takes over
aportion of your screen with awindow that looks like this:

YO ME

- . &Q I.:.

P 3 P el %ﬁ ;
1 1

AT 4o ol !

LR

W

indicators and)
VM memory display object memory code cache

Theindicatorsin the left part of the display correspond to various internal activities and events. On
the very left are the CPU bars which show how much CPU is used in various parts of the system.
The following table lists the individual indicators:

91

SELF Virtual Machine Reference The system monitor

page N N page faults occurred during the last time interval (N is not displayed if N=1). The time interval
currently is 1/25 of a second.

read SELF is blocked reading from a“slow” device, e.g., the keyboard or mouse.

write SELF isblocked writing to a“slow” device, e.g., the screen.

disk infout SELFisdoing disk 1/O.

UNIX SELF isblocked in some UNIX system call other than read or write.

idle SELF has nothing to do. (shows up only when using processes.)

The middle part of the display contains some information on VM memory usage displayed in tex-
tual form, as described below:

92

SELF Virtual Machine Reference

The system monitor

Color Meaning

black Allocated, residing in real memory.
gray Allocated, paged out.

white Unallocated memory.

93

SELF Virtual Machine Reference Primitives

Appendix 5.B Primitives

Primitives are SELF methods implemented by the virtual machine. The first character of a primi-
tive's selector is an underscore (‘_"). You cannot define primitives yourself (unless you modify the
Virtual Machine), nor can you define slots beginning with an underscore.

5.B.1 Primitivefailures

Every primitive call can take an optional argument defining how errors should be handled for this
call. To do this, the primitive is extended with an | f Fai | : argument. For example, _Asbj ect
becomes AsObj ect|fFail:,and I nt Add: becomes | nt Add: IfFail:.

>3 _IntAdd: a |IfFail: [| :error. :nane |

(name, ' failed with ', error, '.’) printLine. 0]
_IntAdd: failed with badTypeError.
0 The primitive returns the result of evaluating the failure block.
>

When a primitive fails, if the primitive call hasan | f Fai | : part, the message val ue: Wt h: is
senttothel f Fai | : argument, passing two strings: the name of the primitive and an error string

indicating the reason for failure. If the failing primitive call does not havean | f Fai | : part, the

messageprimtive: Fai |l edWt h: issenttotherecever of the primitive cal with the same two
strings as arguments.

The result returned by the error handler becomes the result of the primitive operation (0 in our ex-
ample); execution then continues normally. If you want the program to be aborted, you have to do
this explicitly within the error handler, for example by calling the standard er r or : method de-
fined in the default world.

The following table lists the error string prefixes passed by the VM to indicate the reason of the
primitive failure. If the error string consists of more than the prefix it will reveal more details about
the error.

%

SELF Virtual Machine Reference

Primitives

badSizeError
reflectTypeError
outOfMemoryError

stackOverflowError
slotNameError
argumentCountError
unassignabl eS| otError
lonelyAssignmentS| otError
parallel TWAINSError
noProcessError
noActivationError
noReceiverError
noParentSlot
noSenderSlot
deadProxyError
liveProxyError
wrongNoOfArgsError
null PointerError
nullCharError

prematureEndOfInputError
noDynamicLinkerError
EPERM, ENOENT, ...

Aninvalid size of avector was specified, e.g. attempting to clone a vector with a
negativesize(see_Cl one: Fill er: and _Cl oneBytes: Fil | er: below).

A mirror primitive was applied to the wrong kind of slot, e.g.
_MrrorParent G oupAt: toadotthat isn't aparent slot.

A primitive could not complete because its results would not fit in the existing
space

The stack overflowed during execution of the primitive or program.
Illegal slot name.

Wrong number of arguments.

Thisdlot isnot assignable.

Assignment slot must have a corresponding data slot.

Can not invoke TWAINS primitive (another processis already using it).
This process does not exist.

This method activation does not exist.

This activation has no receiver.

This activation has no lexical parent.

This activation has no sender dlot.

This proxy is dead and can not be used.

This proxy islive and can not be used to hold a proxy result.

Wrong number of arguments was supplied with call of foreign function.
Foreign function returned null pointer.

Can not pass byte vector containing null char to foreign function expecting a
string.

Premature end of input during parsing.
Primitive depends on dynamic linker which is not available in this system.

These errors are returned by a UNIX primitive if a UNIX system call executed by
the primitive fails. The UNIX error codes are defined in/ usr /i ncl ude/ sys/
errno. h; seethisfile for details on the roughly 90 different UNIX error codes.

The _Er r or Message primitive, sent to an error string returned by any primitive, returns a more
descriptive version of the error message; thisis especially useful for UNIX errors.

5.B.2 Available primitives

A complete list of primitives can be obtained by sendingpri nitivelLi st toprinmtives. Doc-
umentation for a primitive (such as_Cl one), can be obtained using at : , thus:

primtives at:

" _Clone’

A list of primitive names matching a pattern can be obtained thus:

primtives match:

_Menor y*’

Some points to note when browsing primitives:

95

SELF Virtual Machine Reference Primitives

» Since strings are special kinds of byte vectors, primitives taking byte vectors as arguments
can usually take strings. The exception is that canonical strings cannot be passed to primi-
tives that modify the object.

 Integer arithmetic primitives take integer receivers and arguments; floating-point arithmetic
primitives take floating-point receivers and arguments.

» All comparison primitives return either true or false. Integer comparison primitives take in-
teger receivers and arguments; floating-point comparison primitives take floating-point re-
ceivers and arguments.

* Thereceiver of amirror primitive must be amirror (unless otherwise noted)

96

